1. Observations of the MIssing Baryons in the warm-hot intergalactic medium
- Author
-
Nicastro, F., Kaastra, J., Krongold, Y., Borgani, S., Branchini, E., Cen, R., Dadina, M., Danforth, C. W., Elvis, M., Fiore, F., Gupta, A., Mathur, S., Mayya, D., Paerels, F., Piro, L., Rosa-Gonzales, D., Schaye, J., Shull, J. M., Torres-Zafra, J., Wijers, N., and Zappacosta, L.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
It has been known for decades that the observed number of baryons in the local universe falls about 30-40% short of the total number of baryons predicted by Big-Bang Nucleosynthesis, as inferred from density fluctuations of the Cosmic Microwave Background and seen during the first 2-3 billion years of the universe in the so called Lyman-alpha Forest. A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas - hydrogen - is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios. Indeed, despite the large observational efforts, only a few marginal claims of detection have been made so far. Here we report observations of two absorbers of highly ionized oxygen (OVII) in the high signal-to-noise-ratio X-ray spectrum of a quasar at redshift >0.4. These absorbers show no variability over a 2-year timescale and have no associated cold absorption, making the assumption that they originate from the quasar's intrinsic outflow or the host galaxy's interstellar medium implausible. The OVII systems lie in regions characterized by large (x4 compared to average) galaxy over-densities and their number (down to the sensitivity threshold of our data), agrees well with numerical simulation predictions for the long-sought warm-hot intergalactic medium (WHIM). We conclude that the missing baryons have been found., Comment: Appeared in Nature (Volume 558, Issue 7710) on 21 June 2018. The posted PDF version is the pre-editorial-change version and includes the main paper, its Methods section and the Extended Data section. A link to the (view-only) PDF of the final published version of the paper, is available here: https://rdcu.be/1eak
- Published
- 2018
- Full Text
- View/download PDF