1. Biological efficacy of perpendicular type-I collagen protruded from TiO2-nanotubes
- Author
-
Chia-Yu Chen, David. M. Kim, Cliff Lee, John Da Silva, Shigemi Nagai, Toshiki Nojiri, and Masazumi Nagai
- Subjects
Dentistry ,RK1-715 - Abstract
Abstract The aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen (Col-I) from TiO2 nanotubes (NT-EPF surface). We hypothesized that the NT-EPF surface would play bifunctional roles in stimulating platelet-mediated fibroblast recruitment and anchoring fibroblast-derived Col-I to form a perpendicular collagen assembly, mimicking the connective tissue attachment around natural teeth for the long-term maintenance of dental implants. Ti surface modification was accomplished in two steps. First, TiO2 nanotubes (NT) array was fabricated via anodization. Diameters and depths of NTs were controlled by applied voltage and duration. Subsequently, an electrophoretic fusion (EPF) method was applied to fuse Col-I into nanotube arrays in a perpendicular fashion. Surface wettability was assessed by contact angle measurement. The bioactivity of modified TiO2 surfaces was evaluated in terms of NIH3T3 fibroblast attachment, platelet activation, and collagen extension. Early attachment, aggregation, and activation of platelets as well as release of platelet-related growth factors were demonstrated on NT-EPF surfaces. Platelet-mediated NIH3T3 cells migration toward NT-EPF was significantly increased and the attached cells showed a typical fibrous morphology with elongated spindle shape. A direct linkage between pseudopod-like processes of fibroblasts to NT-EPF surfaces was observed. Furthermore, the engineered EPF collagen protrusion linked with cell-derived collagen in a perpendicular fashion. Within the limitation of this in vitro study, the TiO2 nanotube with perpendicular Col-I surface (NT-EPF) promoted better cell attachment, induced a strong platelet activation which suggested the ability to create a more robust soft tissue seal.
- Published
- 2020
- Full Text
- View/download PDF