15 results on '"Trněný, O."'
Search Results
2. Incidence of Six Grass Species by Fusarium sp. as a Cause of Silvertop
- Author
-
Trněný, O., Nedělník, J., Brazauskas, Gintaras, editor, Statkevičiūtė, Gražina, editor, and Jonavičienė, Kristina, editor
- Published
- 2018
- Full Text
- View/download PDF
3. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.)
- Author
-
Hradilová, I., Trněný, O., Válková, M., Cechová, M., Janská, A., Prokešová, L., Aamir, K., Krezdorn, N., Rotter, B., Winter, P., Varshney, R.K., Soukup, A., Bednář, P., Hanáček, P., Smýkal, P., Hradilová, I., Trněný, O., Válková, M., Cechová, M., Janská, A., Prokešová, L., Aamir, K., Krezdorn, N., Rotter, B., Winter, P., Varshney, R.K., Soukup, A., Bednář, P., Hanáček, P., and Smýkal, P.
- Abstract
The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography–electrospray ionization/mass spectrometry and Laser desorption/ionization–mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehis
- Published
- 2017
4. Domestication has altered gene expression and secondary metabolites in pea seed coat.
- Author
-
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, and Smýkal P
- Subjects
- Plant Proteins genetics, Plant Proteins metabolism, Proteomics methods, Flavonoids metabolism, Seeds genetics, Seeds metabolism, Seeds growth & development, Pisum sativum genetics, Pisum sativum metabolism, Gene Expression Regulation, Plant, Domestication, Secondary Metabolism genetics
- Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet., (© 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
5. Domestication has altered the ABA and gibberellin profiles in developing pea seeds.
- Author
-
Balarynová J, Klčová B, Tarkowská D, Turečková V, Trněný O, Špundová M, Ochatt S, and Smýkal P
- Subjects
- Gibberellins metabolism, Pisum sativum genetics, Pisum sativum metabolism, Domestication, Germination, Seeds, Plant Dormancy genetics, Abscisic Acid metabolism, Arabidopsis genetics
- Abstract
Main Conclusion: We showed that wild pea seeds contained a more diverse combination of bioactive GAs and had higher ABA content than domesticated peas. Although the role of abscisic acid (ABA) and gibberellins (GAs) interplay has been extensively studied in Arabidopsis and cereals models, comparatively little is known about the effect of domestication on the level of phytohormones in legume seeds. In legumes, as in other crops, seed dormancy has been largely or entirely removed during domestication. In this study, we have measured the endogenous levels of ABA and GAs comparatively between wild and domesticated pea seeds during their development. We have shown that wild seeds contained more ABA than domesticated ones, which could be important for preparing the seeds for the period of dormancy. ABA was catabolised particularly by an 8´-hydroxylation pathway, and dihydrophaseic acid was the main catabolite in seed coats as well as embryos. Besides, the seed coats of wild and pigmented cultivated genotypes were characterised by a broader spectrum of bioactive GAs compared to non-pigmented domesticated seeds. GAs in both seed coat and embryo were synthesized mainly by a 13-hydroxylation pathway, with GA
29 being the most abundant in the seed coat and GA20 in the embryos. Measuring seed water content and water loss indicated domesticated pea seeds´ desiccation was slower than that of wild pea seeds. Altogether, we showed that pea domestication led to a change in bioactive GA composition and a lower ABA content during seed development., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
6. Prevalence and Distribution of Three Bumblebee Pathogens from the Czech Republic.
- Author
-
Votavová A, Trněný O, Staveníková J, Dybová M, Brus J, and Komzáková O
- Abstract
Bumblebees are significant pollinators for both wild plants and economically important crops. Due to the worldwide decrease in pollinators, it is crucial to monitor the prevalence and distribution of bumblebee pathogens. Field-caught bumblebee workers and males were examined for the presence of three pathogens during the summer months of the years 2015-2020 ( Bombus terrestris/lucorum ) and 2015-2017 ( Bombus lapidarius ). The greatest prevalence was in the case of Crithidia bombi , where significantly more workers (57%) of B. terrestris/lucorum were infected than males (41%). Infection was also confirmed in 37% of B. lapidarius workers. The average prevalence was very similar in the case of Nosema bombi in workers (25%) and males (22%) of B. terrestris/lucorum . In the case of B. lapidarius , 17% of the workers were infected. The lowest number of infected individuals was for Apicystis bombi and the prevalence of infection was significantly higher for males (22%) than workers (8%) of B. terrestris/lucorum . Only 3% of workers and 4% of males of B. terrestris/lucorum were simultaneously infected with three types of pathogens, but no worker was infected with only a combination of N. bombi and A. bombi . The greatest prevalence of C. bombi was found in urban or woodland areas.
- Published
- 2022
- Full Text
- View/download PDF
7. Genes Associated with Biological Nitrogen Fixation Efficiency Identified Using RNA Sequencing in Red Clover ( Trifolium pratense L.).
- Author
-
Vlk D, Trněný O, and Řepková J
- Abstract
Commonly studied in the context of legume-rhizobia symbiosis, biological nitrogen fixation (BNF) is a key component of the nitrogen cycle in nature. Despite its potential in plant breeding and many years of research, information is still lacking as to the regulation of hundreds of genes connected with plant-bacteria interaction, nodulation, and nitrogen fixation. Here, we compared root nodule transcriptomes of red clover ( Trifolium pratense L.) genotypes with contrasting nitrogen fixation efficiency, and we found 491 differentially expressed genes (DEGs) between plants with high and low BNF efficiency. The annotation of genes expressed in nodules revealed more than 800 genes not yet experimentally confirmed. Among genes mediating nodule development, four nod-ule-specific cysteine-rich (NCR) peptides were confirmed in the nodule transcriptome. Gene duplication analyses revealed that genes originating from tandem and dispersed duplication are significantly over-represented among DEGs. Weighted correlation network analysis (WGCNA) organized expression profiles of the transcripts into 16 modules linked to the analyzed traits, such as nitrogen fixation efficiency or sample-specific modules. Overall, the results obtained broaden our knowledge about transcriptomic landscapes of red clover's root nodules and shift the phenotypic description of BNF efficiency on the level of gene expression in situ.
- Published
- 2022
- Full Text
- View/download PDF
8. The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication.
- Author
-
Balarynová J, Klčová B, Sekaninová J, Kobrlová L, Cechová MZ, Krejčí P, Leonova T, Gorbach D, Ihling C, Smržová L, Trněný O, Frolov A, Bednář P, and Smýkal P
- Subjects
- Domestication, Pigmentation, Proteomics, Seeds genetics, Seeds metabolism, Catechol Oxidase genetics, Catechol Oxidase metabolism, Pisum sativum genetics, Pisum sativum metabolism
- Abstract
Seed coats serve as protective tissue to the enclosed embryo. As well as mechanical there are also chemical defence functions. During domestication, the property of the seed coat was altered including the removal of the seed dormancy. We used a range of genetic, transcriptomic, proteomic and metabolomic approaches to determine the function of the pea seed polyphenol oxidase (PPO) gene. Sequencing analysis revealed one nucleotide insertion or deletion in the PPO gene, with the functional PPO allele found in all wild pea samples, while most cultivated peas have one of the three nonfunctional ppo alleles. PPO functionality cosegregates with hilum pigmentation. PPO gene and protein expression, as well as enzymatic activity, was downregulated in the seed coats of cultivated peas. The functionality of the PPO gene relates to the oxidation and polymerisation of gallocatechin in the seed coat. Additionally, imaging mass spectrometry supports the hypothesis that hilum pigmentation is conditioned by the presence of both phenolic precursors and sufficient PPO activity. Taken together these results indicate that the nonfunctional polyphenol oxidase gene has been selected during pea domestication, possibly due to better seed palatability or seed coat visual appearance., (© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.)
- Published
- 2022
- Full Text
- View/download PDF
9. Allelic Variants for Candidate Nitrogen Fixation Genes Revealed by Sequencing in Red Clover ( Trifolium pratense L.).
- Author
-
Trněný O, Vlk D, Macková E, Matoušková M, Řepková J, Nedělník J, Hofbauer J, Vejražka K, Jakešová H, Jansa J, Piálek L, and Knotová D
- Subjects
- Alleles, Genotype, Host Microbial Interactions, Phenotype, Plant Roots genetics, Plant Roots microbiology, Rhizobium physiology, Symbiosis genetics, Trifolium microbiology, Genes, Plant genetics, Nitrogen Fixation genetics, Polymorphism, Genetic, Sequence Analysis, DNA methods, Trifolium genetics
- Abstract
Plant-rhizobia symbiosis can activate key genes involved in regulating nodulation associated with biological nitrogen fixation (BNF). Although the general molecular basis of the BNF process is frequently studied, little is known about its intraspecific variability and the characteristics of its allelic variants. This study's main goals were to describe phenotypic and genotypic variation in the context of nitrogen fixation in red clover ( Trifolium pretense L.) and identify variants in BNF candidate genes associated with BNF efficiency. Acetylene reduction assay validation was the criterion for selecting individual plants with particular BNF rates. Sequences in 86 key candidate genes were obtained by hybridization-based sequence capture target enrichment of plants with alternative phenotypes for nitrogen fixation. Two genes associated with BNF were identified: ethylene response factor required for nodule differentiation ( EFD ) and molybdate transporter 1 ( MOT1 ). In addition, whole-genome population genotyping by double-digest restriction-site-associated sequencing (ddRADseq) was performed, and BNF was evaluated by the natural
15 N abundance method. Polymorphisms associated with BNF and reflecting phenotype variability were identified. The genetic structure of plant accessions was not linked to BNF rate of measured plants. Knowledge of the genetic variation within BNF candidate genes and the characteristics of genetic variants will be beneficial in molecular diagnostics and breeding of red clover.- Published
- 2019
- Full Text
- View/download PDF
10. Molecular Evidence for Two Domestication Events in the Pea Crop.
- Author
-
Trněný O, Brus J, Hradilová I, Rathore A, Das RR, Kopecký P, Coyne CJ, Reeves P, Richards C, and Smýkal P
- Abstract
Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius , with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide analysis of 11,343 polymorphic single nucleotide polymorphisms (SNPs) on a set of wild P. elatius (134) and P. fulvum (20) and 74 domesticated accessions (64 P. sativum landraces and 10 P. abyssinicum ), we demonstrated that domesticated P. sativum and the Ethiopian pea ( P. abyssinicum ) were derived from different P. elatius genepools. Therefore, pea has at least two domestication events. The analysis does not support a hybrid origin of P. abyssinicum , which was likely introduced into Ethiopia and Yemen followed by eco-geographic adaptation. Both P. sativum and P. abyssinicum share traits that are typical of domestication, such as non-dormant seeds. Non-dormant seeds were also found in several wild P. elatius accessions which could be the result of crop to wild introgression or natural variation that may have been present during pea domestication. A sub-group of P. elatius overlaps with P. sativum landraces. This may be a consequence of bidirectional gene-flow or may suggest that this group of P. elatius is the closest extant wild relative of P. sativum .
- Published
- 2018
- Full Text
- View/download PDF
11. Author Correction: Genomic diversity and macroecology of the crop wild relatives of domesticated pea.
- Author
-
Smýkal P, Hradilová I, Trněný O, Brus J, Rathore A, Bariotakis M, Das RR, Bhattacharyya D, Richards C, Coyne CJ, and Pirintsos S
- Abstract
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
- Published
- 2018
- Full Text
- View/download PDF
12. Correction: Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance.
- Author
-
Smýkal P, Trněný O, Brus J, Hanáček P, Rathore A, Roma RD, Pechanec V, Duchoslav M, Bhattacharyya D, Bariotakis M, Pirintsos S, Berger J, and Toker C
- Abstract
[This corrects the article DOI: 10.1371/journal.pone.0194056.].
- Published
- 2018
- Full Text
- View/download PDF
13. Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance.
- Author
-
Smýkal P, Trněný O, Brus J, Hanáček P, Rathore A, Roma RD, Pechanec V, Duchoslav M, Bhattacharyya D, Bariotakis M, Pirintsos S, Berger J, and Toker C
- Subjects
- Alleles, Genetic Variation genetics, Phenotype, Polymorphism, Single Nucleotide genetics, Pisum sativum genetics, Pollination genetics
- Abstract
Knowledge of current genetic diversity and mating systems of crop wild relatives (CWR) in the Fertile Crescent is important in crop genetic improvement, because western agriculture began in the area after the cold-dry period known as Younger Dryas about 12,000 years ago and these species are also wild genepools of the world's most important food crops. Wild pea (Pisum sativum subsp. elatius) is an important source of genetic diversity for further pea crop improvement harbouring traits useful in climate change context. The genetic structure was assessed on 187 individuals of Pisum sativum subsp. elatius from fourteen populations collected in the northern part of the Fertile Crescent using 18,397 genome wide single nucleotide polymorphism DARTseq markers. AMOVA showed that 63% of the allelic variation was distributed between populations and 19% between individuals within populations. Four populations were found to contain admixed individuals. The observed heterozygosity ranged between 0.99 to 6.26% with estimated self-pollination rate between 47 to 90%. Genetic distances of wild pea populations were correlated with geographic but not environmental (climatic) distances and support a mixed mating system with predominant self-pollination. Niche modelling with future climatic projections showed a local decline in habitats suitable for wild pea, making a strong case for further collection and ex situ conservation.
- Published
- 2018
- Full Text
- View/download PDF
14. Genomic diversity and macroecology of the crop wild relatives of domesticated pea.
- Author
-
Smýkal P, Hradilová I, Trněný O, Brus J, Rathore A, Bariotakis M, Das RR, Bhattacharyya D, Richards C, Coyne CJ, and Pirintsos S
- Subjects
- Genomics, Middle East, Phylogeny, Domestication, Genetic Variation, Pisum sativum genetics, Phylogeography
- Abstract
There is growing interest in the conservation and utilization of crop wild relatives (CWR) in international food security policy and research. Legumes play an important role in human health, sustainable food production, global food security, and the resilience of current agricultural systems. Pea belongs to the ancient set of cultivated plants of the Near East domestication center and remains an important crop today. Based on genome-wide analysis, P. fulvum was identified as a well-supported species, while the diversity of wild P. sativum subsp. elatius was structured into 5 partly geographically positioned clusters. We explored the spatial and environmental patterns of two progenitor species of domesticated pea in the Mediterranean Basin and in the Fertile Crescent in relation to the past and current climate. This study revealed that isolation by distance does not explain the genetic structure of P. sativum subsp. elatius in its westward expansion from its center of origin. The genetic diversity of wild pea may be driven by Miocene-Pliocene events, while the phylogenetic diversity centers may reflect Pleisto-Holocene climatic changes. These findings help set research and discussion priorities and provide geographical and ecological information for germplasm-collecting missions, as well as for the preservation of extant diversity in ex-situ collections.
- Published
- 2017
- Full Text
- View/download PDF
15. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea ( Pisum sp.).
- Author
-
Hradilová I, Trněný O, Válková M, Cechová M, Janská A, Prokešová L, Aamir K, Krezdorn N, Rotter B, Winter P, Varshney RK, Soukup A, Bednář P, Hanáček P, and Smýkal P
- Abstract
The origin of the agriculture was one of the turning points in human history, and a central part of this was the evolution of new plant forms, domesticated crops. Seed dispersal and germination are two key traits which have been selected to facilitate cultivation and harvesting of crops. The objective of this study was to analyze anatomical structure of seed coat and pod, identify metabolic compounds associated with water-impermeable seed coat and differentially expressed genes involved in pea seed dormancy and pod dehiscence. Comparative anatomical, metabolomics, and transcriptomic analyses were carried out on wild dormant, dehiscent Pisum elatius (JI64, VIR320) and cultivated, indehiscent Pisum sativum non-dormant (JI92, Cameor) and recombinant inbred lines (RILs). Considerable differences were found in texture of testa surface, length of macrosclereids, and seed coat thickness. Histochemical and biochemical analyses indicated genotype related variation in composition and heterogeneity of seed coat cell walls within macrosclereids. Liquid chromatography-electrospray ionization/mass spectrometry and Laser desorption/ionization-mass spectrometry of separated seed coats revealed significantly higher contents of proanthocyanidins (dimer and trimer of gallocatechin), quercetin, and myricetin rhamnosides and hydroxylated fatty acids in dormant compared to non-dormant genotypes. Bulk Segregant Analysis coupled to high throughput RNA sequencing resulted in identification of 770 and 148 differentially expressed genes between dormant and non-dormant seeds or dehiscent and indehiscent pods, respectively. The expression of 14 selected dormancy-related genes was studied by qRT-PCR. Of these, expression pattern of four genes: porin (MACE-S082), peroxisomal membrane PEX14-like protein (MACE-S108), 4-coumarate CoA ligase (MACE-S131), and UDP-glucosyl transferase (MACE-S139) was in agreement in all four genotypes with Massive analysis of cDNA Ends (MACE) data. In case of pod dehiscence, the analysis of two candidate genes ( SHATTERING and SHATTERPROOF ) and three out of 20 MACE identified genes (MACE-P004, MACE-P013, MACE-P015) showed down-expression in dorsal and ventral pod suture of indehiscent genotypes. Moreover, MACE-P015, the homolog of peptidoglycan-binding domain or proline-rich extensin-like protein mapped correctly to predicted Dpo1 locus on PsLGIII. This integrated analysis of the seed coat in wild and cultivated pea provides new insight as well as raises new questions associated with domestication and seed dormancy and pod dehiscence.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.