1. The CGM$^2$ Survey: Circumgalactic O VI from dwarf to massive star-forming galaxies
- Author
-
Tchernyshyov, K., Werk, J. K., Wilde, M. C., Prochaska, J. X., Tripp, T. M., Burchett, J. N., Bordoloi, R., Howk, J. C., Lehner, N., O'Meara, J. M., Tejos, N., and Tumlinson, J.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We combine 126 new galaxy-O VI absorber pairs from the CGM$^2$ survey with 123 pairs drawn from the literature to examine the simultaneous dependence of the column density of O VI absorbers ($N_{\rm O VI}$) on galaxy stellar mass, star formation rate, and impact parameter. The combined sample consists of 249 galaxy-O VI absorber pairs covering $z=0$-$0.6$, with host galaxy stellar masses $M^*=10^{7.8}$-$10^{11.2}$ $M_\odot$ and galaxy-absorber impact parameters $R_\perp=0$-$400$ proper kiloparsecs. In this work, we focus on the variation of $N_{\rm O VI}$ with galaxy mass and impact parameter among the star-forming galaxies in the sample. We find that the average $N_{\rm O VI}$ within one virial radius of a star-forming galaxy is greatest for star-forming galaxies with $M^*=10^{9.2}$-$10^{10}$ $M_\odot$. Star-forming galaxies with $M^*$ between $10^{8}$ and $10^{11.2}$ $M_\odot$ can explain most O VI systems with column densities greater than 10$^{13.5}$ cm$^{-2}$. 60% of the O VI mass associated with a star-forming galaxy is found within one virial radius and 35% is found between one and two virial radii. In general, we find that some departure from hydrostatic equilibrium in the CGM is necessary to reproduce the observed O VI amount, galaxy mass dependence, and extent. Our measurements serve as a test set for CGM models over a broad range of host galaxy masses., Comment: 25 pages, 9 figures. Accepted to ApJ
- Published
- 2021
- Full Text
- View/download PDF