1. Biocarbons from microfibrillated cellulose/lignosulfonate precursors: A study of electrical conductivity development during slow pyrolysis
- Author
-
Ying Shao, Didier Chaussy, Chamseddine Guizani, Philippe Grosseau, Davide Beneventi, Laboratoire Génie des procédés papetiers (LGP2 ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS), Inst National Polytechnique de Grenoble (INPG), Institut National Polytechnique de Grenoble (INPG), Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département Procédés de Mise en oeuvre des Milieux Granulaires (PMMG-ENSMSE), Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Laboratoire Georges Friedel (LGF-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université de Grenoble Alpes - LGP2, Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Laboratoire Génie des procédés papetiers [1995-2019] (LGP2 [1995-2019]), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019]), and Institut Mines-Télécom [Paris] (IMT)
- Subjects
Materials science ,Infrared spectroscopy ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,symbols.namesake ,chemistry.chemical_compound ,Electrical resistivity and conductivity ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,General Materials Science ,Lignosulfonates ,lignocellulosic ,Cellulose ,Ra ,Electrical conductor ,ComputingMilieux_MISCELLANEOUS ,Biocarbons ,microfibrillated ,General Chemistry ,pyrolysis ,021001 nanoscience & nanotechnology ,Microstructure ,cellulose ,0104 chemical sciences ,Chemical engineering ,chemistry ,symbols ,0210 nano-technology ,Raman spectroscopy ,Pyrolysis - Abstract
International audience; Carbons were elaborated from purely lignocellulosic precursors (Microfibrillated cellulose and Lignosulfonates blends, simplified as MFC/LS blends) by slow pyrolysis (0.2 °C/min) in a large temperature range (400–1200 °C). They were characterized in terms of morphology (scanning electron microscopy), chemical functionalities (infrared spectroscopy), microstructure (Raman spectroscopy and X-ray diffraction) and physical properties (electrical conductivity and density evolution). MFC/LS carbons could achieve high electrical conductivity of 95 S/cm with regard to their low density, i.e.1.14 g/cm3 after pyrolysis at 1000 °C, compared to other biocarbons. The major aim of this work was to understand the electrical conductivity development in MFC/LS-derived biocarbons during the pyrolysis. A descriptive model, based on the progressive conversion of the biomass into conductive engineering carbons and composed of 3 distinct phases, was thus established to illustrate the electrical conductivity development phenomenon.
- Published
- 2018
- Full Text
- View/download PDF