1. Design and evaluation of low voltage neural network-based state estimators in scenarios with minimal measurement infrastructure
- Author
-
Universitat Politècnica de Catalunya. Doctorat en Enginyeria Elèctrica, Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya. CITCEA-UPC - Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments, Bragantini, Andrea, Sumper, Andreas, Universitat Politècnica de Catalunya. Doctorat en Enginyeria Elèctrica, Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya. CITCEA-UPC - Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments, Bragantini, Andrea, and Sumper, Andreas
- Abstract
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works, Learning-based state estimators can represent a cost-effective opportunity for distribution system operators to perform grid monitoring and control in low-voltage grids where the measuring infrastructure is minimal, if not absent. This study lays the foundation for designing and evaluating neural network-based state estimators for low-voltage radial distribution grids. A simulation-based methodology is proposed for generating synthetic training data-sets relying only on minimal grid data. Additionally, a novel framework for performance analysis of low voltage learning-based state estimators is considered, which relies on a bi-dimensional evaluation of the absolute error and the parallel observation of relative metrics. The applicability and potential of these estimators have been tested and validated through various low-voltage radial case studies, showing promising results especially for large distribution grids. Finally, a propagation error study has been conducted to observe how these estimators handle errors in input measurements., This work was supported in part by MCIN/AEI/10.13039/501100011033 under Project MERIDIAN TED2021-131753B-I00, and in part by the European Union ‘‘NextGenerationEU/PRTR.’’ The work of Andreas Sumper was supported by the Catalan Institution for Research and Advanced Studies (ICREA) Academia Program., Postprint (published version)
- Published
- 2024