38 results on '"Uros Seljak"'
Search Results
2. Microcanonical Hamiltonian Monte Carlo.
- Author
-
Jakob Robnik, Giuseppe Bruno De Luca, Eva Silverstein, and Uros Seljak
- Published
- 2023
3. Deterministic Langevin Unconstrained Optimization with Normalizing Flows.
- Author
-
James M. Sullivan and Uros Seljak
- Published
- 2023
- Full Text
- View/download PDF
4. Multiscale Flow for Robust and Optimal Cosmological Analysis.
- Author
-
Biwei Dai and Uros Seljak
- Published
- 2023
- Full Text
- View/download PDF
5. Sliced Iterative Normalizing Flows.
- Author
-
Biwei Dai and Uros Seljak
- Published
- 2021
6. Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference.
- Author
-
Richard D. P. Grumitt, Biwei Dai, and Uros Seljak
- Published
- 2022
7. Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference.
- Author
-
Uros Seljak, Richard D. P. Grumitt, and Biwei Dai
- Published
- 2022
- Full Text
- View/download PDF
8. A Probabilistic Autoencoder for Type Ia Supernovae Spectral Time Series.
- Author
-
George Stein, Uros Seljak, Vanessa Böhm, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, Sébastien Bongard, K. Boone, C. Buton, Y. Copin, S. Dixon, Dominique Fouchez, Emmanuel Gangler, R. Gupta, B. Hayden, W. Hillebrandt, M. Karmen, A. G. Kim, M. Kowalski, D. Kusters, P. F. Leget, F. Mondon, J. Nordin, R. Pain, E. Pecontal, R. Pereira, S. Perlmutter, K. A. Ponder, D. Rabinowitz, M. Rigault, D. Rubin, K. Runge, C. Saunders, G. Smadja, N. Suzuki, C. Tao, Rollin C. Thomas, and Maria Vincenzi
- Published
- 2022
- Full Text
- View/download PDF
9. Translation and Rotation Equivariant Normalizing Flow (TRENF) for Optimal Cosmological Analysis.
- Author
-
Biwei Dai and Uros Seljak
- Published
- 2022
10. Probabilistic Autoencoder.
- Author
-
Vanessa M. Boehm and Uros Seljak
- Published
- 2022
11. Normalizing Constant Estimation with Gaussianized Bridge Sampling.
- Author
-
He Jia and Uros Seljak
- Published
- 2019
12. pocoMC: A Python package for accelerated Bayesian inference in astronomy and cosmology.
- Author
-
Minas Karamanis, David Nabergoj, Florian Beutler, John A. Peacock, and Uros Seljak
- Published
- 2022
- Full Text
- View/download PDF
13. Statistical Significance Testing for Mixed Priors: A Combined Bayesian and Frequentist Analysis.
- Author
-
Jakob Robnik and Uros Seljak
- Published
- 2022
- Full Text
- View/download PDF
14. Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian Deep Learning.
- Author
-
Biwei Dai and Uros Seljak
- Published
- 2020
15. Unsupervised in-distribution anomaly detection of new physics through conditional density estimation.
- Author
-
George Stein, Uros Seljak, and Biwei Dai
- Published
- 2020
16. Sliced Iterative Generator.
- Author
-
Biwei Dai and Uros Seljak
- Published
- 2020
17. Probabilistic Auto-Encoder.
- Author
-
Vanessa Böhm and Uros Seljak
- Published
- 2020
18. FlowPM: Distributed TensorFlow implementation of the FastPM cosmological N-body solver.
- Author
-
Chirag Modi 0002, François Lanusse, and Uros Seljak
- Published
- 2021
- Full Text
- View/download PDF
19. Uncertainty Quantification with Generative Models.
- Author
-
Vanessa Böhm, François Lanusse, and Uros Seljak
- Published
- 2019
20. Generative Learning of Counterfactual for Synthetic Control Applications in Econometrics.
- Author
-
Chirag Modi 0002 and Uros Seljak
- Published
- 2019
21. Posterior inference unchained with EL_2O.
- Author
-
Uros Seljak and Byeonghee Yu
- Published
- 2019
22. The Simons Observatory: science goals andforecasts
- Author
-
Peter Ade, James Aguirre, Zeeshan Ahmed, Simone Aiola, Aamir Ali, David Alonso, Marcelo A. Alvarez, Kam Arnold, Peter Ashton, Jason Austermann, Humna Awan, Carlo Baccigalupi, Taylor Baildon, Darcy Barron, Nick Battaglia, Richard Battye, Eric Baxter, Andrew Bazarko, James A. Beall, Rachel Bean, Dominic Beck, Shawn Beckman, Benjamin Beringue, Federico Bianchini, Steven Boada, David Boettger, J. Richard Bond, Julian Borrill, Michael L. Brown, Sarah Marie Bruno, Sean Bryan, Erminia Calabrese, Victoria Calafut, Paolo Calisse, Julien Carron, Anthony Challinor, Grace Chesmore, Yuji Chinone, Jens Chluba, Hsiao-Mei Sherry Cho, Steve Choi, Gabriele Coppi, Nicholas F. Cothard, Kevin Coughlin, Devin Crichton, Kevin D. Crowley, Kevin T. Crowley, Ari Cukierman, John M. D'Ewart, Rolando Dünner, Tijmen de Haan, Mark Devlin, Simon Dicker, Joy Didier, Matt Dobbs, Bradley Dober, Cody J. Duell, Shannon Duff, Adri Duivenvoorden, Jo Dunkley, John Dusatko, Josquin Errard, Giulio Fabbian, Stephen Feeney, Simone Ferraro, Pedro Fluxà, Katherine Freese, Josef C. Frisch, Andrei Frolov, George Fuller, Brittany Fuzia, Nicholas Galitzki, Patricio A. Gallardo, Jose Tomas Galvez Ghersi, Jiansong Gao, Eric Gawiser, Martina Gerbino, Vera Gluscevic, Neil Goeckner-Wald, Joseph Golec, Sam Gordon, Megan Gralla, Daniel Green, Arpi Grigorian, John Groh, Chris Groppi, Yilun Guan, Jon E. Gudmundsson, Dongwon Han, Peter Hargrave, Masaya Hasegawa, Matthew Hasselfield, Makoto Hattori, Victor Haynes, Masashi Hazumi, Yizhou He, Erin Healy, Shawn W. Henderson, Carlos Hervias-Caimapo, Charles A. Hill, J. Colin Hill, Gene Hilton, Matt Hilton, Adam D. Hincks, Gary Hinshaw, Renée Hložek, Shirley Ho, Shuay-Pwu Patty Ho, Logan Howe, Zhiqi Huang, Johannes Hubmayr, Kevin Huffenberger, John P. Hughes, Anna Ijjas, Margaret Ikape, Kent Irwin, Andrew H. Jaffe, Bhuvnesh Jain, Oliver Jeong, Daisuke Kaneko, Ethan D. Karpel, Nobuhiko Katayama, Brian Keating, Sarah S. Kernasovskiy, Reijo Keskitalo, Theodore Kisner, Kenji Kiuchi, Jeff Klein, Kenda Knowles, Brian Koopman, Arthur Kosowsky, Nicoletta Krachmalnicoff, Stephen E. Kuenstner, Chao-Lin Kuo, Akito Kusaka, Jacob Lashner, Adrian Lee, Eunseong Lee, David Leon, Jason S.-Y. Leung, Antony Lewis, Yaqiong Li, Zack Li, Michele Limon, Eric Linder, Carlos Lopez-Caraballo, Thibaut Louis, Lindsay Lowry, Marius Lungu, Mathew Madhavacheril, Daisy Mak, Felipe Maldonado, Hamdi Mani, Ben Mates, Frederick Matsuda, Loïc Maurin, Phil Mauskopf, Andrew May, Nialh McCallum, Chris McKenney, Jeff McMahon, P. Daniel Meerburg, Joel Meyers, Amber Miller, Mark Mirmelstein, Kavilan Moodley, Moritz Munchmeyer, Charles Munson, Sigurd Naess, Federico Nati, Martin Navaroli, Laura Newburgh, Ho Nam Nguyen, Michael Niemack, Haruki Nishino, John Orlowski-Scherer, Lyman Page, Bruce Partridge, Julien Peloton, Francesca Perrotta, Lucio Piccirillo, Giampaolo Pisano, Davide Poletti, Roberto Puddu, Giuseppe Puglisi, Chris Raum, Christian L. Reichardt, Mathieu Remazeilles, Yoel Rephaeli, Dominik Riechers, Felipe Rojas, Anirban Roy, Sharon Sadeh, Yuki Sakurai, Maria Salatino, Mayuri Sathyanarayana Rao, Emmanuel Schaan, Marcel Schmittfull, Neelima Sehgal, Joseph Seibert, Uros Seljak, Blake Sherwin, Meir Shimon, Carlos Sierra, Jonathan Sievers, Precious Sikhosana, Maximiliano Silva-Feaver, Sara M. Simon, Adrian Sinclair, Praween Siritanasak, Kendrick Smith, Stephen R. Smith, David Spergel, Suzanne T. Staggs, George Stein, Jason R. Stevens, Radek Stompor, Aritoki Suzuki, Osamu Tajima, Satoru Takakura, Grant Teply, Daniel B. Thomas, Ben Thorne, Robert Thornton, Hy Trac, Calvin Tsai, Carole Tucker, Joel Ullom, Sunny Vagnozzi, Alexander van Engelen, Jeff Van Lanen, Daniel D. Van Winkle, Eve M. Vavagiakis, Clara Vergès, Michael Vissers, Kasey Wagoner, Samantha Walker, Jon Ward, Ben Westbrook, Nathan Whitehorn, Jason Williams, Joel Williams, Edward J. Wollack, Zhilei Xu, Byeonghee Yu, Cyndia Yu, Fernando Zago, Hezi Zhang, and Ningfeng Zhu
- Subjects
Astrophysics ,Astronomy - Abstract
The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial configuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping ≈ 10% of the sky to a white noise level of 2 μK-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of σ(r)=0.003. The large aperture telescope will map ≈ 40% of the sky at arcminute angular resolution to an expected white noise level of 6 μK-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
- Published
- 2019
- Full Text
- View/download PDF
23. The Simons Observatory: Astro2020 APC Whitepaper
- Author
-
Abitbol, Maximilian H., Shunsuke, Adachi, Peter, Ade, James, Aguirre, Zeeshan, Ahmed, Simone, Aiola, Aamir, Ali, David, Alonso, Alvarez, Marcelo A., Kam, Arnold, Peter, Ashton, Zachary, Atkins, Jason, Austermann, Humna, Awan, Carlo, Baccigalupi, Taylor, Baildon, Anton Baleato Lizancos, Darcy, Barron, Nick, Battaglia, Richard, Battye, Eric, Baxter, Andrew, Bazarko, Beall, James A., Rachel, Bean, Dominic, Beck, Shawn, Beckman, Benjamin, Beringue, Tanay, Bhandarkar, Sanah, Bhimani, Federico, Bianchini, Steven, Boada, David, Boettger, Boris, Bolliet, Richard Bond, J., Julian, Borrill, Brown, Michael L., Sarah Marie Bruno, Sean, Bryan, Erminia, Calabrese, Victoria, Calafut, Paolo, Calisse, Julien, Carron, Carl, Fred. M., Juan, Cayuso, Anthony, Challinor, Grace, Chesmore, Yuji, Chinone, Jens, Chluba, Hsiao-Mei Sherry Cho, Steve, Choi, Susan, Clark, Philip, Clarke, Carlo, Contaldi, Gabriele, Coppi, Cothard, Nicholas F., Kevin, Coughlin, Will, Coulton, Devin, Crichton, Crowley, Kevin D., Crowley, Kevin T., Ari, Cukierman, D'Ewart, John M., Rolando, Dünner, Tijmen de Haan, Mark, Devlin, Simon, Dicker, Bradley, Dober, Duell, Cody J., Shannon, Duff, Adri, Duivenvoorden, Dunkley, Jo, Hamza El Bouhargani, Josquin, Errard, Giulio, Fabbian, Stephen, Feeney, James, Fergusson, Simone, Ferraro, Pedro, Fluxà, Katherine, Freese, Frisch, Josef C., Andrei, Frolov, George, Fuller, Nicholas, Galitzki, Gallardo, Patricio A., Jose Tomas Galvez Ghersi, Jiansong, Gao, Eric, Gawiser, Martina, Gerbino, Vera, Gluscevic, Neil, Goeckner-Wald, Joseph, Golec, Sam, Gordon, Megan, Gralla, Daniel, Green, Arpi, Grigorian, John, Groh, Chris, Groppi, Yilun, Guan, Gudmundsson, Jon E., Mark, Halpern, Dongwon, Han, Peter, Hargrave, Kathleen, Harrington, Masaya, Hasegawa, Matthew, Hasselfield, Makoto, Hattori, Victor, Haynes, Masashi, Hazumi, Erin, Healy, Henderson, Shawn W., Brandon, Hensley, Carlos, Hervias-Caimapo, Hill, Charles A., Colin Hill, J., Gene, Hilton, Matt, Hilton, Hincks, Adam D., Gary, Hinshaw, Renée, Hložek, Shirley, Ho, Shuay-Pwu Patty Ho, Hoang, Thuong D., Jonathan, Hoh, Hotinli, Selim C., Zhiqi, Huang, Johannes, Hubmayr, Kevin, Huffenberger, Hughes, John P., Anna, Ijjas, Margaret, Ikape, Kent, Irwin, Jaffe, Andrew H., Bhuvnesh, Jain, Oliver, Jeong, Matthew, Johnson, Daisuke, Kaneko, Karpel, Ethan D., Nobuhiko, Katayama, Brian, Keating, Reijo, Keskitalo, Theodore, Kisner, Kenji, Kiuchi, Jeff, Klein, Kenda, Knowles, Anna, Kofman, Brian, Koopman, Arthur, Kosowsky, Nicoletta, Krachmalnicoff, Akito, Kusaka, Phil, Laplante, Jacob, Lashner, Adrian, Lee, Eunseong, Lee, Antony, Lewis, Yaqiong, Li, Zack, Li, Michele, Limon, Eric, Linder, Jia, Liu, Carlos, Lopez-Caraballo, Thibaut, Louis, Marius, Lungu, Mathew, Madhavacheril, Daisy, Mak, Felipe, Maldonado, Hamdi, Mani, Ben, Mates, Frederick, Matsuda, Loïc, Maurin, Phil, Mauskopf, Andrew, May, Nialh, Mccallum, Heather, Mccarrick, Chris, Mckenney, Jeff, Mcmahon, Daniel Meerburg, P., James, Mertens, Joel, Meyers, Amber, Miller, Mark, Mirmelstein, Kavilan, Moodley, Jenna, Moore, Moritz, Munchmeyer, Charles, Munson, Masaaki, Murata, Sigurd, Naess, Toshiya, Namikawa, Federico, Nati, Martin, Navaroli, Laura, Newburgh, Ho Nam Nguyen, Andrina, Nicola, Mike, Niemack, Haruki, Nishino, Yume, Nishinomiya, John, Orlowski-Scherer, Luca, Pagano, Bruce, Partridge, Francesca, Perrotta, Phumlani, Phakathi, Lucio, Piccirillo, Elena, Pierpaoli, Giampaolo, Pisano, Davide, Poletti, Roberto, Puddu, Giuseppe, Puglisi, Chris, Raum, Reichardt, Christian L., Mathieu, Remazeilles, Yoel, Rephaeli, Dominik, Riechers, Felipe, Rojas, Aditya, Rotti, Anirban, Roy, Sharon, Sadeh, Yuki, Sakurai, Maria, Salatino, Mayuri Sathyanarayana Rao, Lauren, Saunders, Emmanuel, Schaan, Marcel, Schmittfull, Neelima, Sehgal, Joseph, Seibert, Uros, Seljak, Paul, Shellard, Blake, Sherwin, Meir, Shimon, Carlos, Sierra, Jonathan, Sievers, Cristobal, Sifon, Precious, Sikhosana, Maximiliano, Silva-Feaver, Simon, Sara M., Adrian, Sinclair, Kendrick, Smith, Wuhyun, Sohn, Rita, Sonka, David, Spergel, Jacob, Spisak, Staggs, Suzanne T., George, Stein, Stevens, Jason R., Radek, Stompor, Aritoki, Suzuki, Osamu, Tajima, Satoru, Takakura, Grant, Teply, Thomas, Daniel B., Ben, Thorne, Robert, Thornton, Trac, Hy, Jesse, Treu, Calvin, Tsai, Carole, Tucker, Joel, Ullom, Vagnozzi, Sunny, Alexander van Engelen, Jeff Van Lanen, Van Winkle, Daniel D., Vavagiakis, Eve M., Clara, Vergès, Michael, Vissers, Kasey, Wagoner, Samantha, Walker, Yuhan, Wang, Jon, Ward, Ben, Westbrook, Nathan, Whitehorn, Jason, Williams, Joel, Williams, Edward, Wollack, Zhilei, Xu, Siavash, Yasini, Edward, Young, Byeonghee, Yu, Cyndia, Yu, Fernando, Zago, Mario, Zannoni, Hezi, Zhang, Kaiwen, Zheng, Ningfeng, Zhu, and Andrea, Zonca
- Published
- 2019
24. Cosmic Visions Dark Energy: Technology
- Author
-
Scott Dodelson, Anze Slosar, Katrin Heitmann, Chris Hirata, Klaus Honscheid, Aaron Roodman, and Uros Seljak
- Published
- 2016
- Full Text
- View/download PDF
25. The Second Data Release of the Sloan Digital Sky Survey
- Author
-
Kevork Abazajian, Jennifer K. Adelman-McCarthy, Marcel A. Agüeros, Sahar S. Allam, Kurt, S. J. Anderson, Scott F. Anderson, James Annis, Neta A. Bahcall, Ivan K. Baldry, Steven Bastian, Andreas Berlind, Mariangela Bernardi, Michael R. Blanton, John J. Bochanski, Jr., William N. Boroski, John W. Briggs, J. Brinkmann, Robert J. Brunner, Tamás Budavári, Larry N. Carey, Samuel Carliles, Francisco J. Castander, A. J. Connolly, István Csabai, Mamoru Doi, Feng Dong, Daniel J. Eisenstein, Michael L. Evans, Xiaohui Fan, Douglas P. Finkbeiner, Scott D. Friedman, Joshua A. Frieman, Masataka Fukugita, Roy R. Gal, Bruce Gillespie, Karl Glazebrook, Jim Gray, Eva K. Grebel, James E. Gunn, Vijay K. Gurbani, Patrick B. Hall, Masaru Hamabe, Frederick H. Harris, Hugh C. Harris, Michael Harvanek, Timothy M. Heckman, John S. Hendry, Gregory S. Hennessy, Robert B. Hindsley, Craig J. Hogan, David W. Hogg, Donald J. Holmgren, Shin-ichi Ichikawa, Takashi Ichikawa, Željko Ivezić, Sebastian Jester, David E. Johnston, Anders M. Jorgensen, Stephen M. Kent, S. J. Kleinman, G. R. Knapp, Alexei Yu. Kniazev, Richard G. Kron, Jurek Krzesinski, Peter Z. Kunszt, Nickolai Kuropatkin, Donald Q. Lamb, Hubert Lampeitl, Brian C. Lee, R. French Leger, Nolan Li, Huan Lin, Yeong-Shang Loh, Daniel C. Long, Jon Loveday, Robert H. Lupton, Tanu Malik, Bruce Margon, Takahiko Matsubara, Peregrine M. McGehee, Timothy A. McKay, Avery Meiksin, Jeffrey A. Munn, Reiko Nakajima, Thomas Nash, Eric H. Neilsen, Jr., Heidi Jo Newberg, Peter R. Newman, Robert C. Nichol, Tom Nicinski, Maria Nieto-Santisteban, Atsuko Nitta, Sadanori Okamura, William O'Mullane, Jeremiah P. Ostriker, Russell Owen, Nikhil Padmanabhan, John Peoples, Jeffrey R. Pier, Adrian C. Pope, Thomas R. Quinn, Gordon T. Richards, Michael W. Richmond, Hans-Walter Rix, Constance M. Rockosi, David J. Schlegel, Donald P. Schneider, Ryan Scranton, Maki Sekiguchi, Uros Seljak, Gary Sergey, Branimir Sesar, Erin Sheldon, Kazu Shimasaku, Walter A. Siegmund, Nicole M. Silvestri, J. Allyn Smith, Vernesa Smolčić, Stephanie A. Snedden, Albert Stebbins, Chris Stoughton, Michael A. Strauss, Mark SubbaRao, Alexander S. Szalay, István Szapudi, Paula Szkody, Gyula P. Szokoly, Max Tegmark, Luis Teodoro, Aniruddha R. Thakar, Christy Tremonti, Douglas L. Tucker, Alan Uomoto, Daniel E. Vanden Berk, Jan Vandenberg, Michael S. Vogeley, Wolfgang Voges, Nicole P. Vogt, Lucianne M. Walkowicz, Shu-i Wang, David H. Weinberg, Andrew A. West, Simon D. M. White, Brian C. Wilhite, Yongzhong Xu, Brian Yanny, Naoki Yasuda, Ching-Wa Yip, D. R. Yocum, Donald G. York, Idit Zehavi, Stefano Zibetti, and Daniel B. Zucker
- Subjects
Point spread function ,Physics ,Astrophysics and Astronomy ,business.industry ,media_common.quotation_subject ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Quasar ,Astrophysics ,Stellar classification ,NATURAL SCIENCES. Physics ,Galaxy ,atlases ,PRIRODNE ZNANOSTI. Fizika ,Photometry (astronomy) ,Stars ,Software ,surveys ,Space and Planetary Science ,Sky ,business ,catalogs ,media_common - Abstract
The Sloan Digital Sky Survey has validated and made publicly available its Second Data Release. This data release consists of 3324 square degrees of five-band (u g r i z) imaging data with photometry for over 88 million unique objects, 367,360 spectra of galaxies, quasars, stars and calibrating blank sky patches selected over 2627 degrees of this area, and tables of measured parameters from these data. The imaging data reach a depth of r ~ 22.2 (95% completeness limit for point sources) and are photometrically and astrometrically calibrated to 2% rms and 100 milli-arcsec rms per coordinate, respectively. The imaging data have all been processed through a new version of the SDSS imaging pipeline, in which the most important improvement since the last data release is fixing an error in the model fits to each object. The result is that model magnitudes are now a good proxy for point spread function (PSF) magnitudes for point sources, and Petrosian magnitudes for extended sources. The spectroscopy extends from 3800 A to 9200 A at a resolution of 2000. The spectroscopic software now repairs a systematic error in the radial velocities of certain types of stars, and has substantially improved spectrophotometry. All data included in the SDSS Early Data Release and First Data Release are reprocessed with the improved pipelines, and included in the Second Data Release. The data are publically available as of 2004 March 15 via the web sites http://www.sdss.org/dr2 and http://skyserver.sdss.org ., 24 pages, submitted to AJ. See ftp://ftp.astro.princeton.edu/strauss/sdss/dr2.ps for high-resolution figures
- Published
- 2004
- Full Text
- View/download PDF
26. Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes
- Author
-
Bhuvnesh Jain and Uros Seljak
- Subjects
Physics ,Matter power spectrum ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Second moment of area ,Spectral density ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Redshift ,Nonlinear system ,Amplitude ,Space and Planetary Science ,Scaling ,Weak gravitational lensing - Abstract
Weak lensing by large scale structure induces correlated ellipticities in the images of distant galaxies. The two-point correlation is determined by the matter power spectrum along the line of sight. We use the fully nonlinear evolution of the power spectrum to compute the predicted ellipticity correlation. We present results for different measures of the second moment for angular scales \theta \simeq 1'-3 degrees and for alternative normalizations of the power spectrum, in order to explore the best strategy for constraining the cosmological parameters. Normalizing to observed cluster abundance the rms amplitude of ellipticity within a 15' radius is \simeq 0.01 z_s^{0.6}, almost independent of the cosmological model, with z_s being the median redshift of background galaxies. Nonlinear effects in the evolution of the power spectrum significantly enhance the ellipticity for \theta < 10' -- on 1' the rms ellipticity is \simeq 0.05, which is nearly twice the linear prediction. This enhancement means that the signal to noise for the ellipticity is only weakly increasing with angle for 2'< \theta < 2 degrees, unlike the expectation from linear theory that it is strongly peaked on degree scales. The scaling with cosmological parameters also changes due to nonlinear effects. By measuring the correlations on small (nonlinear) and large (linear) angular scales, different cosmological parameters can be independently constrained to obtain a model independent estimate of both power spectrum amplitude and matter density \Omega_m. Nonlinear effects also modify the probability distribution of the ellipticity. Using second order perturbation theory we find that over most of the range of interest there are significant deviations from a normal distribution., Comment: 38 pages, 11 figures included. Extended discussion of observational prospects, matches accepted version to appear in ApJ
- Published
- 1997
- Full Text
- View/download PDF
27. The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
- Author
-
Christopher P. Ahn, Rachael Alexandroff, Carlos Allende Prieto, Scott F. Anderson, Timothy Anderton, Brett H. Andrews, Éric Aubourg, Stephen Bailey, Eduardo Balbinot, Rory Barnes, Julian Bautista, Timothy C. Beers, Alessandra Beifiori, Andreas A. Berlind, Vaishali Bhardwaj, Dmitry Bizyaev, Cullen H. Blake, Michael R. Blanton, Michael Blomqvist, John J. Bochanski, Adam S. Bolton, Arnaud Borde, Jo Bovy, W. N. Brandt, J. Brinkmann, Peter J. Brown, Joel R. Brownstein, Kevin Bundy, N. G. Busca, William Carithers, Aurelio R. Carnero, Michael A. Carr, Dana I. Casetti-Dinescu, Yanmei Chen, Cristina Chiappini, Johan Comparat, Natalia Connolly, Justin R. Crepp, Stefano Cristiani, Rupert A. C. Croft, Antonio J. Cuesta, Luiz N. da Costa, James R. A. Davenport, Kyle S. Dawson, Roland de Putter, Nathan De Lee, Timothée Delubac, Saurav Dhital, Anne Ealet, Garrett L. Ebelke, Edward M. Edmondson, Daniel J. Eisenstein, S. Escoffier, Massimiliano Esposito, Michael L. Evans, Xiaohui Fan, Bruno Femenía Castellá, Emma Fernández Alvar, Leticia D. Ferreira, N. Filiz Ak, Hayley Finley, Scott W. Fleming, Andreu Font-Ribera, Peter M. Frinchaboy, D. A. García-Hernández, A. E. García Pérez, Jian Ge, R. Génova-Santos, Bruce A. Gillespie, Léo Girardi, Jonay I. González Hernández, Eva K. Grebel, James E. Gunn, Hong Guo, Daryl Haggard, Jean-Christophe Hamilton, David W. Harris, Suzanne L. Hawley, Frederick R. Hearty, Shirley Ho, David W. Hogg, Jon A. Holtzman, Klaus Honscheid, J. Huehnerhoff, Inese I. Ivans, Željko Ivezić, Heather R. Jacobson, Linhua Jiang, Jonas Johansson, Jennifer A. Johnson, Guinevere Kauffmann, David Kirkby, Jessica A. Kirkpatrick, Mark A. Klaene, Gillian R. Knapp, Jean-Paul Kneib, Jean-Marc Le Goff, Alexie Leauthaud, Khee-Gan Lee, Young Sun Lee, Daniel C. Long, Craig P. Loomis, Sara Lucatello, Britt Lundgren, Robert H. Lupton, Bo Ma, Zhibo Ma, Nicholas MacDonald, Claude E. Mack, Suvrath Mahadevan, Marcio A. G. Maia, Steven R. Majewski, Martin Makler, Elena Malanushenko, Viktor Malanushenko, A. Manchado, Rachel Mandelbaum, Marc Manera, Claudia Maraston, Daniel Margala, Sarah L. Martell, Cameron K. McBride, Ian D. McGreer, Richard G. McMahon, Brice Ménard, Sz. Meszaros, Jordi Miralda-Escudé, Antonio D. Montero-Dorta, Francesco Montesano, Heather L. Morrison, Demitri Muna, Jeffrey A. Munn, Hitoshi Murayama, Adam D. Myers, A. F. Neto, Duy Cuong Nguyen, Robert C. Nichol, David L. Nidever, Pasquier Noterdaeme, Sebastián E. Nuza, Ricardo L. C. Ogando, Matthew D. Olmstead, Daniel J. Oravetz, Russell Owen, Nikhil Padmanabhan, Nathalie Palanque-Delabrouille, Kaike Pan, John K. Parejko, Prachi Parihar, Isabelle Pâris, Petchara Pattarakijwanich, Joshua Pepper, Will J. Percival, Ismael Pérez-Fournon, Ignasi Pérez-Ràfols, Patrick Petitjean, Janine Pforr, Matthew M. Pieri, Marc H. Pinsonneault, G. F. Porto de Mello, Francisco Prada, Adrian M. Price-Whelan, M. Jordan Raddick, Rafael Rebolo, James Rich, Gordon T. Richards, Annie C. Robin, Helio J. Rocha-Pinto, Constance M. Rockosi, Natalie A. Roe, Ashley J. Ross, Nicholas P. Ross, Graziano Rossi, J. A. Rubiño-Martin, Lado Samushia, J. Sanchez Almeida, Ariel G. Sánchez, Basílio Santiago, Conor Sayres, David J. Schlegel, Katharine J. Schlesinger, Sarah J. Schmidt, Donald P. Schneider, Mathias Schultheis, Axel D. Schwope, C. G. Scóccola, Uros Seljak, Erin Sheldon, Yue Shen, Yiping Shu, Jennifer Simmerer, Audrey E. Simmons, Ramin A. Skibba, M. F. Skrutskie, A. Slosar, Flavia Sobreira, Jennifer S. Sobeck, Keivan G. Stassun, Oliver Steele, Matthias Steinmetz, Michael A. Strauss, Alina Streblyanska, Nao Suzuki, Molly E. C. Swanson, Tomer Tal, Aniruddha R. Thakar, Daniel Thomas, Benjamin A. Thompson, Jeremy L. Tinker, Rita Tojeiro, Christy A. Tremonti, M. Vargas Magaña, Licia Verde, Matteo Viel, Shailendra K. Vikas, Nicole P. Vogt, David A. Wake, Ji Wang, Benjamin A. Weaver, David H. Weinberg, Benjamin J. Weiner, Andrew A. West, Martin White, John C. Wilson, John P. Wisniewski, W. M. Wood-Vasey, Brian Yanny, Christophe Yèche, Donald G. York, O. Zamora, Gail Zasowski, Idit Zehavi, Gong-Bo Zhao, Zheng Zheng, Guangtun Zhu, Joel C. Zinn, APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), AstroParticule et Cosmologie (APC (UMR_7164)), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), BOSS, Instituto de Astrofisica de Canarias (IAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Elon University [NC, USA], Department of Astronomy [Seattle], University of Washington [Seattle], The University of Notre Dame [Sydney], Apache point observatory, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Unité Scientifique de la Station de Nançay (USN), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Universitat de Barcelona, Observatoire des Sciences de l'Univers en région Centre (OSUC), and Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Atles ,Astrophysics ,Surveys ,01 natural sciences ,Astronomical spectroscopy ,Via láctea ,Observatory ,Observacions astronòmiques ,Physical Sciences and Mathematics ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,media_common ,Mapeamentos astronômicos ,Physics ,[PHYS]Physics [physics] ,Astrophysics::Instrumentation and Methods for Astrophysics ,Atlases ,Astrometry ,Cosmology ,atlases ,Instrumentation and Methods for Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astronomical observations ,Cosmology and Gravitation ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,media_common.quotation_subject ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,catalogs ,surveys ,Formacao de galaxias ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Spectrograph ,Astrophysics::Galaxy Astrophysics ,Cosmologia ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Quasar ,Cosmology and Extragalactic Astrophysics ,Espectroscòpia ,Galaxy ,Spectrum analysis ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Stars ,Space and Planetary Science ,Sky ,Catalogs ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014., 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr9
- Published
- 2012
- Full Text
- View/download PDF
28. Constraints on models from POTENT and CMB anisotropies
- Author
-
Uros Seljak and Edmund Bertschinger
- Subjects
Physics ,General Relativity and Quantum Cosmology ,Particle physics ,Amplitude ,Cold dark matter ,Dark matter ,Cosmic microwave background ,Peculiar velocity ,Scale (descriptive set theory) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Anisotropy ,Computer Science::Databases - Abstract
A comparison of density fluctuation amplitudes from POTENT and COBE can set stringent limits on various cosmological models. We find that for the standard CDM model the two amplitudes agree well with each other, while some alternative models predict an excessive amplitude for POTENT compared with COBE. We show how small scale CMB anisotropy measurements can further constrain the models.
- Published
- 2008
- Full Text
- View/download PDF
29. Estimating COVID-19 mortality in Italy early in the COVID-19 pandemic
- Author
-
Chirag Modi, Vanessa Böhm, Simone Ferraro, George Stein, and Uroš Seljak
- Subjects
Science - Abstract
Estimates of COVID-19-related mortality are limited by incomplete testing. Here, the authors perform counterfactual analyses and estimate that there were 59,000–62,000 deaths from COVID-19 in Italy until 9th September 2020, approximately 1.5 times higher than official statistics.
- Published
- 2021
- Full Text
- View/download PDF
30. Ray Tracing Simulations of Weak Lensing by Large-Scale Structure
- Author
-
Uros Seljak, Bhuvnesh Jain, and Simon D. M. White
- Subjects
Physics ,Photon ,Structure formation ,Astrophysics (astro-ph) ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Omega ,Statistical power ,Computational physics ,Nonlinear system ,Point distribution model ,Space and Planetary Science ,Weak gravitational lensing - Abstract
We investigate weak lensing by large-scale structure using ray tracing through N-body simulations. Photon trajectories are followed through high resolution simulations of structure formation to make simulated maps of shear and convergence on the sky. Tests with varying numerical parameters are used to calibrate the accuracy of computed lensing statistics on angular scales from about 1 arcminute to a few degrees. Various aspects of the weak lensing approximation are also tested. For fields a few degrees on a side the shear power spectrum is almost entirely in the nonlinear regime and agrees well with nonlinear analytical predictions. Sampling fluctuations in power spectrum estimates are investigated by comparing several ray tracing realizations of a given model. For survey areas smaller than a degree on a side the main source of scatter is nonlinear coupling to modes larger than the survey. We develop a method which uses this effect to estimate the mass density parameter Omega from the scatter in power spectrum estimates for subregions of a larger survey. We show that the power spectrum can be measured accurately from realistically noisy data on scales corresponding to 1-10 Mpc/h. Non-Gaussian features in the one point distribution function of the weak lensing convergence (reconstructed from the shear) are also sensitive to Omega. We suggest several techniques for estimating Omega in the presence of noise and compare their statistical power, robustness and simplicity. With realistic noise Omega can be determined to within 0.1-0.2 from a deep survey of several square degrees., Comment: 59 pages, 22 figures included. Matches version accepted for ApJ
- Published
- 1999
- Full Text
- View/download PDF
31. Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods
- Author
-
Uros Seljak
- Subjects
Physics ,Covariance matrix ,Dark matter ,Astrophysics (astro-ph) ,Spectral density ,Estimator ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Redshift ,Minimum-variance unbiased estimator ,Space and Planetary Science ,Statistical physics ,Likelihood function ,Weak gravitational lensing - Abstract
Large-scale structure distorts the images of background galaxies, which allows one to measure directly the projected distribution of dark matter in the universe and determine its power spectrum. Here we address the question of how to extract this information from the observations. We derive minimum variance estimators for projected density reconstruction and its power spectrum and apply them to simulated data sets, showing that they give a good agreement with the theoretical minimum variance expectations. The same estimator can also be applied to the cluster reconstruction, where it remains a useful reconstruction technique, although it is no longer optimal for every application. The method can be generalized to include nonlinear cluster reconstruction and photometric information on redshifts of background galaxies in the analysis. We also address the question of how to obtain directly the 3-d power spectrum from the weak lensing data. We derive a minimum variance quadratic estimator, which maximizes the likelihood function for the 3-d power spectrum and can be computed either from the measurements directly or from the 2-d power spectrum. The estimator correctly propagates the errors and provides a full correlation matrix of the estimates. It can be generalized to the case where redshift distribution depends on the galaxy photometric properties, which allows one to measure both the 3-d power spectrum and its time evolution., Comment: revised version, 36 pages, AAS LateX, submitted to ApJ
- Published
- 1997
- Full Text
- View/download PDF
32. Cosmography and Power Spectrum Estimation: a Unified Approach
- Author
-
Uros Seljak
- Subjects
Physics ,Formalism (philosophy of mathematics) ,Space and Planetary Science ,Existential quantification ,Astrophysics (astro-ph) ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Cosmography ,Astrophysics ,Algorithm ,Linear reconstruction - Abstract
We present a unified approach to the problems of reconstruction of large-scale structure distribution in the universe and determination of the underlying power spectrum. These have often been treated as two separate problems and different analysis techniques have been developed for both. We show that there exists a simple relation between the optimal solutions to the two problems, allowing to solve for both within the same formalism. This allows one to apply computational techniques developed for one method to the other, which often leads to a significant reduction in the computational time. It also provides a self consistent treatment of linear reconstruction by optimally computing the power spectrum from the data itself., Comment: 24 pages, AAS LateX, submitted to ApJ
- Published
- 1997
- Full Text
- View/download PDF
33. Integral Solution for the Microwave Background Anisotropies in Non-fl at Universes
- Author
-
Edmund Bertschinger, Uros Seljak, and Matias Zaldarriaga
- Subjects
Physics ,Differential equation ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Polarization (waves) ,Curvature ,Boltzmann equation ,Universe ,symbols.namesake ,Space and Planetary Science ,symbols ,Statistical physics ,Anisotropy ,Bessel function ,media_common - Abstract
We present an efficient method to compute CMB anisotropies in non-flat universes. First we derive the Boltzmann equation for cosmic microwave background temperature and polarization fluctuations produced by scalar perturbations in a general Robertson-Walker universe. We then apply the integral method to solve this equation, writing temperature and polarization anisotropies as a time integral over a geometrical term and a source term. The geometrical terms can be written using ultra-spherical Bessel functions, which depend on curvature. These cannot be precomputed in advance as in flat space. Instead we solve directly their differential equation for selected values of the multipoles. The resulting computational time is comparable to the flat space case and improves over previous methods by 2-3 orders of magnitude. This allows one to compute highly accurate CMB temperature and polarization spectra, matter transfer functions and their CMB normalizations for any cosmological model, thereby avoiding the need to use various approximate fitting formulae that exist in the literature., Comment: 29 pages, 2 figure, AAS LateX, minor revisions to match the accepted version, code available at http://arcturus.mit.edu:80/~matiasz/CMBFAST/cmbfast.html
- Published
- 1997
- Full Text
- View/download PDF
34. Light Propagation in a Clumpy Universe
- Author
-
Lam Hui and Uros Seljak
- Subjects
Physics ,Geodesics in general relativity ,Friedmann equations ,media_common.quotation_subject ,Observable universe ,Scale (descriptive set theory) ,Astrophysics ,Universe ,Metric expansion of space ,General Relativity and Quantum Cosmology ,symbols.namesake ,Theoretical physics ,Metric (mathematics) ,symbols ,Resolution (algebra) ,media_common - Abstract
The propagation of light in an inhomogeneous universe is a long standing problem. Its resolution requires, first, a realistic description of the geometry of a clumpy universe and, second, solutions to the null geodesic equations given the metric of such a universe. The Friedmann-Robertson-Walker metric has become the standard description of the large scale geometry of the universe. However, the observable universe today is manifestly inhomogeneous. The weakly perturbed Friedmann-Robertson-Walker metric is often used to describe such a universe. But its validity is only guaranteed for a weakly inhomogeneous universe, where, for instance, overdensities are small \((\delta \rho /{\bar\rho}\ll 1)\), which is not true for sufficiently small scales in the universe today. It is well known, however, that the metric perturbations can still be small even if the overdensity is not small, given the right conditions and coordinates. However, spatial gradients of metric perturbations are not necessarily small any more. Here we estimate whether the secondorder corrections involving them can affect significantly the expansion of the universe or the light propagation in it.
- Published
- 1996
- Full Text
- View/download PDF
35. GRAVITATIONAL LENSING EFFECT ON COSMIC MICROWAVE BACKGROUND ANISOTROPIES: A POWER SPECTRUM APPROACH
- Author
-
Uros Seljak
- Subjects
Physics ,Oscillation ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics (astro-ph) ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Galaxy ,Universe ,General Relativity and Quantum Cosmology ,Gravitational potential ,Gravitational lens ,Space and Planetary Science ,Multipole expansion ,media_common - Abstract
The effect of gravitational lensing on cosmic microwave background (CMB) anisotropies is investigated using the power spectrum approach. The lensing effect can be calculated in any cosmological model by specifying the evolution of gravitational potential. Previous work on this subject is generalized to a non-flat universe and to a nonlinear evolution regime. Gravitational lensing cannot change the gross distribution of CMB anisotropies, but it may redistribute the power and smooth the sharp features in the CMB power spectrum. The magnitude of this effect is estimated using observational constraints on the power spectrum of gravitational potential from galaxy and cluster surveys and also using the limits on correlated ellipticities in distant galaxies. For realistic CMB power spectra the effect on CMB multipole moments is less then a few percent on degree angular scales, but gradually increases towards smaller scales. On arcminute angular scales the acoustic oscillation peaks may be partially or completely smoothed out because of the gravitational lensing., Comment: extended and corrected appendix, minor revisions of main text, revised figures
- Published
- 1995
- Full Text
- View/download PDF
36. Maximum-Likelihood Analysis of the COBE Angular Correlation Function
- Author
-
Edmund Bertschinger and Uros Seljak
- Subjects
Physics ,Spectral index ,Astrophysics (astro-ph) ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Maximum likelihood analysis ,Astrophysics ,Computational physics ,Amplitude ,Space and Planetary Science ,Quadrupole ,Angular correlation function - Abstract
We have used maximum-likelihood estimation to determine the quadrupole amplitude $Q_{\rm rms-PS}$ and the spectral index $n$ of the density fluctuation power spectrum at recombination from the \cobe\ DMR data. We find a strong correlation between the two parameters of the form $Q_{\rm rms-PS}=(15.7\pm 2.6)\exp[0.46(1-n)]\mk$ for fixed $n$. Our result is slightly smaller than and has a smaller statistical uncertainty than the 1992 estimate of Smoot et al., Comment: 9 pages, AAS Latex v3.0, ApJL, in press
- Published
- 1993
- Full Text
- View/download PDF
37. Large-scale structure effects on the gravitational lens image positions and time delay
- Author
-
Uros Seljak
- Subjects
Length scale ,Physics ,Astrophysics (astro-ph) ,Normalization (image processing) ,FOS: Physical sciences ,Spectral density ,Astronomy and Astrophysics ,Observable ,Astrophysics ,Computational physics ,Gravitation ,Gravitational lens ,Space and Planetary Science ,Scale structure ,Integral element - Abstract
We compute the fluctuations in gravitational lens image positions and time delay caused by large scale structure correlations. We show that these fluctuations can be expressed as a simple integral over the density power spectrum. Using the {\sl COBE} normalization we find that positions of objects at cosmological distances are expected to deviate from their true positions by a few arcminutes. These deflections are not directly observable. The positions of the images relative to one another fluctuate by a few percent of the relative separation, implying that one does not expect multiple images to be produced by large scale structures. Nevertheless, the fluctuations are larger than the observational errors on the positions and affect reconstructions of the lens potential. The time delay fluctuations have a geometrical and a gravitational contribution. Both are much larger than the expected time delay from the primary lens, but partially cancel each other. We find that large scale structure weakly affects the time delay and time delay measurements can be used as a probe of the distance scale in the universe., Comment: 20 pages, AAS Latex, ApJ, in press 1994, preprint MIT-CSR-94-05
- Published
- 1994
- Full Text
- View/download PDF
38. Primordial Non-Gaussianity in the Large-Scale Structure of the Universe
- Author
-
Vincent Desjacques and Uroš Seljak
- Subjects
Astronomy ,QB1-991 - Abstract
Primordial non-Gaussianity is a potentially powerful discriminant of the physical mechanisms that generated the cosmological fluctuations observed today. Any detection of significant non-Gaussianity would thus have profound implications for our understanding of cosmic structure formation. The large-scale mass distribution in the Universe is a sensitive probe of the nature of initial conditions. Recent theoretical progress together with rapid developments in observational techniques will enable us to critically confront predictions of inflationary scenarios and set constraints as competitive as those from the Cosmic Microwave Background. In this paper, we review past and current efforts in the search for primordial non-Gaussianity in the large-scale structure of the Universe.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.