51 results on '"Urrutia, AO"'
Search Results
2. Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)
- Author
-
Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, Zhang, G, Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, and Zhang, G
- Abstract
A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03473-8.
- Published
- 2021
3. Dense sampling of bird diversity increases power of comparative genomics
- Author
-
Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, Zhang, G, Feng, S, Stiller, J, Deng, Y, Armstrong, J, Fang, Q, Reeve, AH, Xie, D, Chen, G, Guo, C, Faircloth, BC, Petersen, B, Wang, Z, Zhou, Q, Diekhans, M, Chen, W, Andreu-Sanchez, S, Margaryan, A, Howard, JT, Parent, C, Pacheco, G, Sinding, M-HS, Puetz, L, Cavill, E, Ribeiro, AM, Eckhart, L, Fjeldsa, J, Hosner, PA, Brumfield, RT, Christidis, L, Bertelsen, MF, Sicheritz-Ponten, T, Tietze, DT, Robertson, BC, Song, G, Borgia, G, Claramunt, S, Lovette, IJ, Cowen, SJ, Njoroge, P, Dumbacher, JP, Ryder, OA, Fuchs, J, Bunce, M, Burt, DW, Cracraft, J, Meng, G, Hackett, SJ, Ryan, PG, Jonsson, KA, Jamieson, IG, da Fonseca, RR, Braun, EL, Houde, P, Mirarab, S, Suh, A, Hansson, B, Ponnikas, S, Sigeman, H, Stervander, M, Frandsen, PB, van der Zwan, H, van der Sluis, R, Visser, C, Balakrishnan, CN, Clark, AG, Fitzpatrick, JW, Bowman, R, Chen, N, Cloutier, A, Sackton, TB, Edwards, SV, Foote, DJ, Shakya, SB, Sheldon, FH, Vignal, A, Soares, AER, Shapiro, B, Gonzalez-Solis, J, Ferrer-Obiol, J, Rozas, J, Riutort, M, Tigano, A, Friesen, V, Dalen, L, Urrutia, AO, Szekely, T, Liu, Y, Campana, MG, Corvelo, A, Fleischer, RC, Rutherford, KM, Gemmell, NJ, Dussex, N, Mouritsen, H, Thiele, N, Delmore, K, Liedvogel, M, Franke, A, Hoeppner, MP, Krone, O, Fudickar, AM, Mila, B, Ketterson, ED, Fidler, AE, Friis, G, Parody-Merino, AM, Battley, PF, Cox, MP, Lima, NCB, Prosdocimi, F, Parchman, TL, Schlinger, BA, Loiselle, BA, Blake, JG, Lim, HC, Day, LB, Fuxjager, MJ, Baldwin, MW, Braun, MJ, Wirthlin, M, Dikow, RB, Ryder, TB, Camenisch, G, Keller, LF, DaCosta, JM, Hauber, ME, Louder, MIM, Witt, CC, McGuire, JA, Mudge, J, Megna, LC, Carling, MD, Wang, B, Taylor, SA, Del-Rio, G, Aleixo, A, Vasconcelos, ATR, Mello, CV, Weir, JT, Haussler, D, Li, Q, Yang, H, Wang, J, Lei, F, Rahbek, C, Gilbert, MTP, Graves, GR, Jarvis, ED, Paten, B, and Zhang, G
- Abstract
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
- Published
- 2020
4. Sexual size dimorphism in mammals is associated with changes in the size of gene families related to brain development.
- Author
-
Padilla-Morales B, Acuña-Alonzo AP, Kilili H, Castillo-Morales A, Díaz-Barba K, Maher KH, Fabian L, Mourkas E, Székely T, Serrano-Meneses MA, Cortez D, Ancona S, and Urrutia AO
- Subjects
- Animals, Humans, Female, Male, Multigene Family, Evolution, Molecular, Sexual Selection genetics, Mammals genetics, Brain growth & development, Sex Characteristics
- Abstract
In mammals, sexual size dimorphism often reflects the intensity of sexual selection, yet its connection to genomic evolution remains unexplored. Gene family size evolution can reflect shifts in the relative importance of different molecular functions. Here, we investigate the associate between brain development gene repertoire to sexual size dimorphism using 124 mammalian species. We reveal significant changes in gene family size associations with sexual size dimorphism. High levels of dimorphism correlate with an expansion of gene families enriched in olfactory sensory perception and a contraction of gene families associated with brain development functions, many of which exhibited particularly high expression in the human adult brain. These findings suggest a relationship between intense sexual selection and alterations in gene family size. These insights illustrate the complex interplay between sexual dimorphism, gene family size evolution, and their roles in mammalian brain development and function, offering a valuable understanding of mammalian genome evolution., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
5. Gut microbiome in two high-altitude bird populations showed heterogeneity in sex and life stage.
- Author
-
Sun M, Halimubieke N, Fang B, Valdebenito JO, Xu X, Sheppard SK, Székely T, Zhang T, He S, Lu R, Ward S, Urrutia AO, and Liu Y
- Abstract
Gut microbiotas have important impacts on host health, reproductive success, and survival. While extensive research in mammals has identified the exogenous (e.g. environment) and endogenous (e.g. phylogeny, sex, and age) factors that shape the gut microbiota composition and functionality, yet avian systems remain comparatively less understood. Shorebirds, characterized by a well-resolved phylogeny and diverse life-history traits, present an ideal model for dissecting the factors modulating gut microbiota dynamics. Here, we provide an insight into the composition of gut microbiota in two high-altitude (ca. 3200 m above sea level) breeding populations of Kentish plover ( Charadrius alexandrinus ) and Tibetan sand plover ( Charadrius altrifrons ) in the Qinghai-Tibetan Plateau, China. By analysing faecal bacterial communities using 16S rRNA sequencing technology, we find a convergence in gut microbial communities between the two species, dominated by Firmicutes, Proteobacteria , and Bacteroidetes . This suggests that the shared breeding environment potentially acts as a significant determinant shaping their gut microbiota. We also show sex- and age-specific patterns of gut microbiota: female adults maintain a higher diversity than males, and juveniles are enriched in Rhizobiaceae and Exiguobacterium due to their vegetative food resource. Our study not only provides a comprehensive descriptive information for future investigations on the diversity, functionality, and determinants of avian microbiomes, but also underscores the importance of microbial communities in broader ecological contexts., Competing Interests: The authors declare that they have no competing interests., (© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2024
- Full Text
- View/download PDF
6. Genome-wide association studies meta-analysis uncovers NOJO and SGS3 novel genes involved in Arabidopsis thaliana primary root development and plasticity.
- Author
-
López-Ruíz BA, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Urrutia AO, and Garay-Arroyo A
- Subjects
- Gene Expression Regulation, Plant genetics, Polymorphism, Single Nucleotide genetics, Phenotype, Genes, Plant genetics, Arabidopsis genetics, Arabidopsis growth & development, Genome-Wide Association Study methods, Plant Roots genetics, Plant Roots growth & development, Arabidopsis Proteins genetics
- Abstract
Background: Arabidopsis thaliana primary root growth has become a model for evo-devo studies due to its simplicity and facility to record cell proliferation and differentiation. To identify new genetic components relevant to primary root growth, we used a Genome-Wide Association Studies (GWAS) meta-analysis approach using data published in the last decade. In this work, we performed intra and inter-studies analyses to discover new genetic components that could participate in primary root growth., Methods and Results: We used 639 accessions from nine different studies under control conditions and performed different GWAS tests. We found that primary root growth changes were associated with 41 genes, of which six (14.6%) have been previously described as inhibitors or promoters of primary root growth. The knockdown lines of two genes, Suppressor of Gene Silencing (SGS3), involved in tasiRNA processing, and a gene with a Sterile Alpha Motif (SAM) motif named NOJOCH MOOTS (NOJO), confirmed their role as repressors of primary root growth, none has been shown to participate in this developmental process before., Conclusions: In summary, our GWAS analysis of different available studies identified new genes that participate in primary root growth; two of them were identified as repressors of primary root growth., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Role-reversed polyandry is associated with faster fast-Z in shorebirds.
- Author
-
Wanders K, Chen G, Feng S, Székely T, and Urrutia AO
- Subjects
- Animals, Female, Male, Sex Chromosomes, Selection, Genetic, Biological Evolution, Genetic Drift, Sexual Selection, Charadriiformes physiology, Charadriiformes genetics, Sexual Behavior, Animal
- Abstract
In birds, males are homogametic and carry two copies of the Z chromosome ('ZZ'), while females are heterogametic and exhibit a 'ZW' genotype. The Z chromosome evolves at a faster rate than similarly sized autosomes, a phenomenon termed 'fast-Z evolution'. This is thought to be caused by two independent processes-greater Z chromosome genetic drift owing to a reduced effective population size, and stronger Z chromosome positive selection owing to the exposure of partially recessive alleles to selection. Here, we investigate the relative contributions of these processes by considering the effect of role-reversed polyandry on fast-Z in shorebirds, a paraphyletic group of wading birds that exhibit unusually diverse mating systems. We find stronger fast-Z effects under role-reversed polyandry, which is consistent with particularly strong selection on polyandrous females driving the fixation of recessive beneficial alleles. This result contrasts with previous research in birds, which has tended to implicate a primary role of genetic drift in driving fast-Z variation. We suggest that this discrepancy can be interpreted in two ways-stronger sexual selection acting on polyandrous females overwhelms an otherwise central role of genetic drift, and/or sexual antagonism is also contributing significantly to fast-Z and is exacerbated in sexually dimorphic species.
- Published
- 2024
- Full Text
- View/download PDF
8. Immune-related pan-cancer gene expression signatures of patient survival revealed by NanoString-based analyses.
- Author
-
D'Angelo A, Kilili H, Chapman R, Generali D, Tinhofer I, Luminari S, Donati B, Ciarrocchi A, Giannini R, Moretto R, Cremolini C, Pietrantonio F, Sobhani N, Bonazza D, Prins R, Song SG, Jeon YK, Pisignano G, Cinelli M, Bagby S, and Urrutia AO
- Subjects
- Humans, Gene Expression Profiling, Prognosis, CD4-Positive T-Lymphocytes, Transcriptome, Neoplasms genetics
- Abstract
The immune system plays a central role in the onset and progression of cancer. A better understanding of transcriptional changes in immune cell-related genes associated with cancer progression, and their significance in disease prognosis, is therefore needed. NanoString-based targeted gene expression profiling has advantages for deployment in a clinical setting over RNA-seq technologies. We analysed NanoString PanCancer Immune Profiling panel gene expression data encompassing 770 genes, and overall survival data, from multiple previous studies covering 10 different cancer types, including solid and blood malignancies, across 515 patients. This analysis revealed an immune gene signature comprising 39 genes that were upregulated in those patients with shorter overall survival; of these 39 genes, three (MAGEC2, SSX1 and ULBP2) were common to both solid and blood malignancies. Most of the genes identified have previously been reported as relevant in one or more cancer types. Using Cibersort, we investigated immune cell levels within individual cancer types and across groups of cancers, as well as in shorter and longer overall survival groups. Patients with shorter survival had a higher proportion of M2 macrophages and γδ T cells. Patients with longer overall survival had a higher proportion of CD8+ T cells, CD4+ T memory cells, NK cells and, unexpectedly, T regulatory cells. Using a transcriptomics platform with certain advantages for deployment in a clinical setting, our multi-cancer meta-analysis of immune gene expression and overall survival data has identified a specific transcriptional profile associated with poor overall survival., Competing Interests: The authors have declared that no competing interests exist., (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- Published
- 2023
- Full Text
- View/download PDF
9. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases.
- Author
-
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, and Urrutia AO
- Subjects
- Humans, Animals, Aging metabolism, Brain metabolism, Genomics, Mammals, Neurodegenerative Diseases pathology, Alzheimer Disease metabolism
- Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
10. Sex differences in immune gene expression in the brain of a small shorebird.
- Author
-
Valdebenito JO, Maher KH, Zachár G, Huang Q, Zhang Z, Young LJ, Székely T, Que P, Liu Y, and Urrutia AO
- Subjects
- Animals, Biological Evolution, Brain, Female, Gene Expression, Male, Charadriiformes genetics, Sex Characteristics
- Abstract
Males and females often exhibit differences in behaviour, life histories, and ecology, many of which are typically reflected in their brains. Neuronal protection and maintenance include complex processes led by the microglia, which also interacts with metabolites such as hormones or immune components. Despite increasing interest in sex-specific brain function in laboratory animals, the significance of sex-specific immune activation in the brain of wild animals along with the variables that could affect it is widely lacking. Here, we use the Kentish plover (Charadrius alexandrinus) to study sex differences in expression of immune genes in the brain of adult males and females, in two wild populations breeding in contrasting habitats: a coastal sea-level population and a high-altitude inland population in China. Our analysis yielded 379 genes associated with immune function. We show a significant male-biased immune gene upregulation. Immune gene expression in the brain did not differ in upregulation between the coastal and inland populations. We discuss the role of dosage compensation in our findings and their evolutionary significance mediated by sex-specific survival and neuronal deterioration. Similar expression profiles in the coastal and inland populations suggest comparable genetic control by the microglia and possible similarities in pathogen pressures between habitats. We call for further studies on gene expression of males and females in wild population to understand the implications of immune function for life-histories and demography in natural systems., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
11. Contrasting gene-level signatures of selection with reproductive fitness.
- Author
-
Bush SJ, Murren CJ, Urrutia AO, and Kover PX
- Subjects
- Base Sequence, Polymorphism, Genetic, Selection, Genetic, Arabidopsis genetics, Genetic Fitness
- Abstract
Selection leaves signatures in the DNA sequence of genes, with many test statistics devised to detect its action. While these statistics are frequently used to support hypotheses about the adaptive significance of particular genes, the effect these genes have on reproductive fitness is rarely quantified experimentally. Consequently, it is unclear how gene-level signatures of selection are associated with empirical estimates of gene effect on fitness. Eukaryotic data sets that permit this comparison are very limited. Using the model plant Arabidopsis thaliana, for which these resources are available, we calculated seven gene-level substitution and polymorphism-based statistics commonly used to infer selection (dN/dS, NI, DOS, Tajima's D, Fu and Li's D*, Fay and Wu's H, and Zeng's E) and, using knockout lines, compared these to gene-level estimates of effect on fitness. We found that consistent with expectations, essential genes were more likely to be classified as negatively selected. By contrast, using 379 Arabidopsis genes for which data was available, we found no evidence that genes predicted to be positively selected had a significantly different effect on fitness than genes evolving more neutrally. We discuss these results in the context of the analytic challenges posed by Arabidopsis, one of the only systems in which this study could be conducted, and advocate for examination in additional systems. These results are relevant to the evaluation of genome-wide studies across species where experimental fitness data is unavailable, as well as highlighting an increasing need for the latter., (© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
12. Lack of age-related mosaic loss of W chromosome in long-lived birds.
- Author
-
Trujillo N, Martínez-Pacheco M, Soldatini C, Ancona S, Young RC, Albores-Barajas YV, Orta AH, Rodríguez C, Székely T, Drummond H, Urrutia AO, and Cortez D
- Subjects
- Animals, Birds genetics, Female, Humans, Male, Mammals genetics, Mosaicism, Sex Chromosomes genetics, Chromosomes, Human, Y, Evolution, Molecular
- Abstract
Females and males often exhibit different survival in nature, and it has been hypothesized that sex chromosomes may play a role in driving differential survival rates. For instance, the Y chromosome in mammals and the W chromosome in birds are often degenerated, with reduced numbers of genes, and loss of the Y chromosome in old men is associated with shorter life expectancy. However, mosaic loss of sex chromosomes has not been investigated in any non-human species. Here, we tested whether mosaic loss of the W chromosome (LOW) occurs with ageing in wild birds as a natural consequence of cellular senescence. Using loci-specific PCR and a target sequencing approach we estimated LOW in both young and adult individuals of two long-lived bird species and showed that the copy number of W chromosomes remains constant across age groups. Our results suggest that LOW is not a consequence of cellular ageing in birds. We concluded that the inheritance of the W chromosome in birds, unlike the Y chromosome in mammals, is more stable.
- Published
- 2022
- Full Text
- View/download PDF
13. Cancer risk across mammals.
- Author
-
Vincze O, Colchero F, Lemaître JF, Conde DA, Pavard S, Bieuville M, Urrutia AO, Ujvari B, Boddy AM, Maley CC, Thomas F, and Giraudeau M
- Subjects
- Aging, Animals, Body Size, Body Weight, Carnivory, Longevity, Phylogeny, Risk Factors, Species Specificity, Animals, Zoo classification, Diet veterinary, Mammals classification, Neoplasms mortality, Neoplasms pathology, Neoplasms veterinary
- Abstract
Cancer is a ubiquitous disease of metazoans, predicted to disproportionately affect larger, long-lived organisms owing to their greater number of cell divisions, and thus increased probability of somatic mutations
1,2 . While elevated cancer risk with larger body size and/or longevity has been documented within species3-5 , Peto's paradox indicates the apparent lack of such an association among taxa6 . Yet, unequivocal empirical evidence for Peto's paradox is lacking, stemming from the difficulty of estimating cancer risk in non-model species. Here we build and analyse a database on cancer-related mortality using data on adult zoo mammals (110,148 individuals, 191 species) and map age-controlled cancer mortality to the mammalian tree of life. We demonstrate the universality and high frequency of oncogenic phenomena in mammals and reveal substantial differences in cancer mortality across major mammalian orders. We show that the phylogenetic distribution of cancer mortality is associated with diet, with carnivorous mammals (especially mammal-consuming ones) facing the highest cancer-related mortality. Moreover, we provide unequivocal evidence for the body size and longevity components of Peto's paradox by showing that cancer mortality risk is largely independent of both body mass and adult life expectancy across species. These results highlight the key role of life-history evolution in shaping cancer resistance and provide major advancements in the quest for natural anticancer defences., (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2022
- Full Text
- View/download PDF
14. Rats exhibit age-related mosaic loss of chromosome Y.
- Author
-
Orta AH, Bush SJ, Gutiérrez-Mariscal M, Castro-Obregón S, Jaimes-Hoy L, Grande R, Vázquez G, Gorostieta-Salas E, Martínez-Pacheco M, Díaz-Barba K, Cornejo-Páramo P, Sanchez-Flores A, Székely T, Urrutia AO, and Cortez D
- Subjects
- Age Factors, Animals, Male, Rats, Rats, Wistar, Aging genetics, Genetic Variation, Monosomy, Y Chromosome pathology
- Abstract
Mosaic loss of the Y chromosome (LOY) is the most frequent chromosomal aberration in aging men and is strongly correlated with mortality and disease. To date, studies of LOY have only been performed in humans, and so it is unclear whether LOY is a natural consequence of our relatively long lifespan or due to exposure to human-specific external stressors. Here, we explored whether LOY could be detected in rats. We applied a locus-specific PCR and target sequencing approach that we used as a proxy to estimate LOY in 339 samples covering eleven tissues from young and old individuals. We detected LOY in four tissues of older rats. To confirm the results from the PCR screening, we re-sequenced 60 full genomes from old rats, which revealed that the Y chromosome is the sole chromosome with low copy numbers. Finally, our results suggest that LOY is associated with other structural aberrations on the Y chromosome and possibly linked to the mosaic loss of the X chromosome. This is the first report, to our knowledge, demonstrating that the patterns of LOY observed in aging men are also present in a rodent, and conclude that LOY may be a natural process in placental mammals., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
15. Inferring Adaptive Codon Preference to Understand Sources of Selection Shaping Codon Usage Bias.
- Author
-
de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CRL, and Wolf JB
- Subjects
- Adaptation, Biological, Base Composition, Protein Biosynthesis, RNA, Transfer metabolism, Codon Usage, Dictyostelium genetics, Selection, Genetic
- Abstract
Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify "adaptive codon preference," a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated "preference" largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2021
- Full Text
- View/download PDF
16. Author Correction: Dense sampling of bird diversity increases power of comparative genomics.
- Author
-
Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, Xie D, Chen G, Guo C, Faircloth BC, Petersen B, Wang Z, Zhou Q, Diekhans M, Chen W, Andreu-Sánchez S, Margaryan A, Howard JT, Parent C, Pacheco G, Sinding MS, Puetz L, Cavill E, Ribeiro ÂM, Eckhart L, Fjeldså J, Hosner PA, Brumfield RT, Christidis L, Bertelsen MF, Sicheritz-Ponten T, Tietze DT, Robertson BC, Song G, Borgia G, Claramunt S, Lovette IJ, Cowen SJ, Njoroge P, Dumbacher JP, Ryder OA, Fuchs J, Bunce M, Burt DW, Cracraft J, Meng G, Hackett SJ, Ryan PG, Jønsson KA, Jamieson IG, da Fonseca RR, Braun EL, Houde P, Mirarab S, Suh A, Hansson B, Ponnikas S, Sigeman H, Stervander M, Frandsen PB, van der Zwan H, van der Sluis R, Visser C, Balakrishnan CN, Clark AG, Fitzpatrick JW, Bowman R, Chen N, Cloutier A, Sackton TB, Edwards SV, Foote DJ, Shakya SB, Sheldon FH, Vignal A, Soares AER, Shapiro B, González-Solís J, Ferrer-Obiol J, Rozas J, Riutort M, Tigano A, Friesen V, Dalén L, Urrutia AO, Székely T, Liu Y, Campana MG, Corvelo A, Fleischer RC, Rutherford KM, Gemmell NJ, Dussex N, Mouritsen H, Thiele N, Delmore K, Liedvogel M, Franke A, Hoeppner MP, Krone O, Fudickar AM, Milá B, Ketterson ED, Fidler AE, Friis G, Parody-Merino ÁM, Battley PF, Cox MP, Lima NCB, Prosdocimi F, Parchman TL, Schlinger BA, Loiselle BA, Blake JG, Lim HC, Day LB, Fuxjager MJ, Baldwin MW, Braun MJ, Wirthlin M, Dikow RB, Ryder TB, Camenisch G, Keller LF, DaCosta JM, Hauber ME, Louder MIM, Witt CC, McGuire JA, Mudge J, Megna LC, Carling MD, Wang B, Taylor SA, Del-Rio G, Aleixo A, Vasconcelos ATR, Mello CV, Weir JT, Haussler D, Li Q, Yang H, Wang J, Lei F, Rahbek C, Gilbert MTP, Graves GR, Jarvis ED, Paten B, and Zhang G
- Published
- 2021
- Full Text
- View/download PDF
17. Emergence of co-expression in gene regulatory networks.
- Author
-
Yin W, Mendoza L, Monzon-Sandoval J, Urrutia AO, and Gutierrez H
- Subjects
- Adolescent, Adult, Algorithms, Brain physiology, Child, Child, Preschool, Gene Expression Profiling methods, Humans, Infant, Infant, Newborn, Young Adult, Computational Biology methods, Gene Expression Regulation, Gene Regulatory Networks, Regulatory Sequences, Nucleic Acid, Transcription Factors metabolism
- Abstract
Transcriptomes are known to organize themselves into gene co-expression clusters or modules where groups of genes display distinct patterns of coordinated or synchronous expression across independent biological samples. The functional significance of these co-expression clusters is suggested by the fact that highly coexpressed groups of genes tend to be enriched in genes involved in common functions and biological processes. While gene co-expression is widely assumed to reflect close regulatory proximity, the validity of this assumption remains unclear. Here we use a simple synthetic gene regulatory network (GRN) model and contrast the resulting co-expression structure produced by these networks with their known regulatory architecture and with the co-expression structure measured in available human expression data. Using randomization tests, we found that the levels of co-expression observed in simulated expression data were, just as with empirical data, significantly higher than expected by chance. When examining the source of correlated expression, we found that individual regulators, both in simulated and experimental data, fail, on average, to display correlated expression with their immediate targets. However, highly correlated gene pairs tend to share at least one common regulator, while most gene pairs sharing common regulators do not necessarily display correlated expression. Our results demonstrate that widespread co-expression naturally emerges in regulatory networks, and that it is a reliable and direct indicator of active co-regulation in a given cellular context., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
18. MeDAS: a Metazoan Developmental Alternative Splicing database.
- Author
-
Li Z, Zhang Y, Bush SJ, Tang C, Chen L, Zhang D, Urrutia AO, Lin JW, and Chen L
- Subjects
- Amphibians genetics, Amphibians growth & development, Amphibians metabolism, Animals, Caenorhabditis elegans genetics, Caenorhabditis elegans growth & development, Caenorhabditis elegans metabolism, Cephalochordata genetics, Cephalochordata growth & development, Cephalochordata metabolism, Exons, High-Throughput Nucleotide Sequencing, Humans, Internet, Introns, Mammals genetics, Mammals growth & development, Mammals metabolism, RNA, Messenger metabolism, Reptiles genetics, Reptiles growth & development, Reptiles metabolism, Software, Urochordata genetics, Urochordata growth & development, Urochordata metabolism, Zebrafish genetics, Zebrafish growth & development, Zebrafish metabolism, Alternative Splicing, Databases, Genetic, Gene Expression Regulation, Developmental, Genome, RNA, Messenger genetics, Transcriptome
- Abstract
Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively., (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2021
- Full Text
- View/download PDF
19. Transcriptional, Behavioral and Biochemical Profiling in the 3xTg-AD Mouse Model Reveals a Specific Signature of Amyloid Deposition and Functional Decline in Alzheimer's Disease.
- Author
-
Yin W, Cerda-Hernández N, Castillo-Morales A, Ruiz-Tejada-Segura ML, Monzón-Sandoval J, Moreno-Castilla P, Pérez-Ortega R, Bermudez-Rattoni F, Urrutia AO, and Gutiérrez H
- Abstract
Alzheimer's disease (AD)-related degenerative decline is associated to the presence of amyloid beta (Aβ) plaque lesions and neuro fibrillary tangles (NFT). However, the precise molecular mechanisms linking Aβ deposition and neurological decline are still unclear. Here we combine genome-wide transcriptional profiling of the insular cortex of 3xTg-AD mice and control littermates from early through to late adulthood (2-14 months of age), with behavioral and biochemical profiling in the same animals to identify transcriptional determinants of functional decline specifically associated to build-up of Aβ deposits. Differential expression analysis revealed differentially expressed genes (DEGs) in the cortex long before observed onset of behavioral symptoms in this model. Using behavioral and biochemical data derived from the same mice and samples, we found that down but not up-regulated DEGs show a stronger average association with learning performance than random background genes in control not seen in AD mice. Conversely, these same genes were found to have a stronger association with Aβ deposition than background genes in AD but not in control mice, thereby identifying these genes as potential intermediaries between abnormal Aβ/NFT deposition and functional decline. Using a complementary approach, gene ontology analysis revealed a highly significant enrichment of learning and memory, associative, memory, and cognitive functions only among down-regulated, but not up-regulated, DEGs. Our results demonstrate wider transcriptional changes triggered by the abnormal deposition of Aβ/NFT occurring well before behavioral decline and identify a distinct set of genes specifically associated to abnormal Aβ protein deposition and cognitive decline., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2020 Yin, Cerda-Hernández, Castillo-Morales, Ruiz-Tejada-Segura, Monzón-Sandoval, Moreno-Castilla, Pérez-Ortega, Bermudez-Rattoni, Urrutia and Gutiérrez.)
- Published
- 2020
- Full Text
- View/download PDF
20. Expression Evolution of Ancestral XY Gametologs across All Major Groups of Placental Mammals.
- Author
-
Martínez-Pacheco M, Tenorio M, Almonte L, Fajardo V, Godínez A, Fernández D, Cornejo-Páramo P, Díaz-Barba K, Halbert J, Liechti A, Székely T, Urrutia AO, and Cortez D
- Subjects
- Animals, Base Sequence, Conserved Sequence, Dosage Compensation, Genetic, Female, Humans, Male, Organ Specificity, Biological Evolution, Eutheria genetics, Gene Expression, Genes, X-Linked, Genes, Y-Linked
- Abstract
Placental mammals present 180 million-year-old Y chromosomes that have retained a handful of dosage-sensitive genes. However, the expression evolution of Y-linked genes across placental groups has remained largely unexplored. Here, we expanded the number of Y gametolog sequences by analyzing ten additional species from previously unexplored groups. We detected seven remarkably conserved genes across 25 placental species with known Y repertoires. We then used RNA-seq data from 17 placental mammals to unveil the expression evolution of XY gametologs. We found that Y gametologs followed, on average, a 3-fold expression loss and that X gametologs also experienced some expression reduction, particularly in primates. Y gametologs gained testis specificity through an accelerated expression decay in somatic tissues. Moreover, despite the substantial expression decay of Y genes, the combined expression of XY gametologs in males is higher than that of both X gametologs in females. Finally, our work describes several features of the Y chromosome in the last common mammalian ancestor., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2020
- Full Text
- View/download PDF
21. Dense sampling of bird diversity increases power of comparative genomics.
- Author
-
Feng S, Stiller J, Deng Y, Armstrong J, Fang Q, Reeve AH, Xie D, Chen G, Guo C, Faircloth BC, Petersen B, Wang Z, Zhou Q, Diekhans M, Chen W, Andreu-Sánchez S, Margaryan A, Howard JT, Parent C, Pacheco G, Sinding MS, Puetz L, Cavill E, Ribeiro ÂM, Eckhart L, Fjeldså J, Hosner PA, Brumfield RT, Christidis L, Bertelsen MF, Sicheritz-Ponten T, Tietze DT, Robertson BC, Song G, Borgia G, Claramunt S, Lovette IJ, Cowen SJ, Njoroge P, Dumbacher JP, Ryder OA, Fuchs J, Bunce M, Burt DW, Cracraft J, Meng G, Hackett SJ, Ryan PG, Jønsson KA, Jamieson IG, da Fonseca RR, Braun EL, Houde P, Mirarab S, Suh A, Hansson B, Ponnikas S, Sigeman H, Stervander M, Frandsen PB, van der Zwan H, van der Sluis R, Visser C, Balakrishnan CN, Clark AG, Fitzpatrick JW, Bowman R, Chen N, Cloutier A, Sackton TB, Edwards SV, Foote DJ, Shakya SB, Sheldon FH, Vignal A, Soares AER, Shapiro B, González-Solís J, Ferrer-Obiol J, Rozas J, Riutort M, Tigano A, Friesen V, Dalén L, Urrutia AO, Székely T, Liu Y, Campana MG, Corvelo A, Fleischer RC, Rutherford KM, Gemmell NJ, Dussex N, Mouritsen H, Thiele N, Delmore K, Liedvogel M, Franke A, Hoeppner MP, Krone O, Fudickar AM, Milá B, Ketterson ED, Fidler AE, Friis G, Parody-Merino ÁM, Battley PF, Cox MP, Lima NCB, Prosdocimi F, Parchman TL, Schlinger BA, Loiselle BA, Blake JG, Lim HC, Day LB, Fuxjager MJ, Baldwin MW, Braun MJ, Wirthlin M, Dikow RB, Ryder TB, Camenisch G, Keller LF, DaCosta JM, Hauber ME, Louder MIM, Witt CC, McGuire JA, Mudge J, Megna LC, Carling MD, Wang B, Taylor SA, Del-Rio G, Aleixo A, Vasconcelos ATR, Mello CV, Weir JT, Haussler D, Li Q, Yang H, Wang J, Lei F, Rahbek C, Gilbert MTP, Graves GR, Jarvis ED, Paten B, and Zhang G
- Subjects
- Animals, Chickens genetics, Conservation of Natural Resources, Datasets as Topic, Finches genetics, Humans, Selection, Genetic genetics, Synteny genetics, Birds classification, Birds genetics, Genome genetics, Genomics methods, Genomics standards, Phylogeny
- Abstract
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity
1-4 . Sparse taxon sampling has previously been proposed to confound phylogenetic inference5 , and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.- Published
- 2020
- Full Text
- View/download PDF
22. Sex determination systems in reptiles are related to ambient temperature but not to the level of climatic fluctuation.
- Author
-
Cornejo-Páramo P, Lira-Noriega A, Ramírez-Suástegui C, Méndez-de-la-Cruz FR, Székely T, Urrutia AO, and Cortez D
- Subjects
- Animals, Breeding, Phylogeny, Reptiles genetics, Sex Ratio, Climate, Reptiles physiology, Sex Determination Processes genetics, Temperature
- Abstract
Background: Vertebrates exhibit diverse sex determination systems and reptiles stand out by having highly variable sex determinations that include temperature-dependent and genotypic sex determination (TSD and GSD, respectively). Theory predicts that populations living in either highly variable or cold climatic conditions should evolve genotypic sex determination to buffer the populations from extreme sex ratios, yet these fundamental predictions have not been tested across a wide range of taxa., Results: Here, we use phylogenetic analyses of 213 reptile species representing 38 families (TSD = 101 species, GSD = 112 species) and climatic data to compare breeding environments between reptiles with GSD versus TSD. We show that GSD and TSD are confronted with the same level of climatic fluctuation during breeding seasons. However, TSD reptiles are significantly associated with warmer climates. We found a strong selection on the breeding season length that minimises exposure to cold and fluctuating climate. Phylogenetic path analyses comparing competing evolutionary hypotheses support that transitions in sex determination systems influenced the ambient temperature at which the species reproduces and nests. In turn, this interaction affects other variables such as the duration of the breeding season and life-history traits., Conclusions: Taken together, our results challenge long-standing hypotheses about the association between sex determination and climate variability. We also show that ambient temperature is important during breeding seasons and it helps explain the effects of sex determination systems on the geographic distribution of extant reptile species.
- Published
- 2020
- Full Text
- View/download PDF
23. Viviparous Reptile Regarded to Have Temperature-Dependent Sex Determination Has Old XY Chromosomes.
- Author
-
Cornejo-Páramo P, Dissanayake DSB, Lira-Noriega A, Martínez-Pacheco ML, Acosta A, Ramírez-Suástegui C, Méndez-de-la-Cruz FR, Székely T, Urrutia AO, Georges A, and Cortez D
- Subjects
- Animals, Female, Male, Lizards genetics, Sex Chromosomes, Sex Determination Processes, Viviparity, Nonmammalian genetics
- Abstract
The water skinks Eulamprus tympanum and Eulamprus heatwolei show thermally induced sex determination where elevated temperatures give rise to male offspring. Paradoxically, Eulamprus species reproduce in temperatures of 12-15 °C making them outliers when compared with reptiles that use temperature as a cue for sex determination. Moreover, these two species are among the very few viviparous reptiles reported to have thermally induced sex determination. Thus, we tested whether these skinks possess undetected sex chromosomes with thermal override. We produced transcriptome and genome data for E. heatwolei. We found that E. heatwolei presents XY chromosomes that include 14 gametologs with regulatory functions. The Y chromosomal region is 79-116 Myr old and shared between water and spotted skinks. Our work provides clear evidence that climate could be useful to predict the type of sex determination systems in reptiles and it also indicates that viviparity is strictly associated with sex chromosomes., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2020
- Full Text
- View/download PDF
24. Demographic Histories and Genome-Wide Patterns of Divergence in Incipient Species of Shorebirds.
- Author
-
Wang X, Maher KH, Zhang N, Que P, Zheng C, Liu S, Wang B, Huang Q, Chen, Yang X, Zhang Z, Székely T, Urrutia AO, and Liu Y
- Abstract
Understanding how incipient species are maintained with gene flow is a fundamental question in evolutionary biology. Whole genome sequencing of multiple individuals holds great potential to illustrate patterns of genomic differentiation as well as the associated evolutionary histories. Kentish ( Charadrius alexandrinus ) and the white-faced ( C. dealbatus ) plovers, which differ in their phenotype, ecology and behavior, are two incipient species and parapatrically distributed in East Asia. Previous studies show evidence of genetic diversification with gene flow between the two plovers. Under this scenario, it is of great importance to explore the patterns of divergence at the genomic level and to determine whether specific regions are involved in reproductive isolation and local adaptation. Here we present the first population genomic analysis of the two incipient species based on the de novo Kentish plover reference genome and resequenced populations. We show that the two plover lineages are distinct in both nuclear and mitochondrial genomes. Using model-based coalescence analysis, we found that population sizes of Kentish plover increased whereas white-faced plovers declined during the Last Glaciation Period. Moreover, the two plovers diverged allopatrically, with gene flow occurring after secondary contact. This has resulted in low levels of genome-wide differentiation, although we found evidence of a few highly differentiated genomic regions in both the autosomes and the Z-chromosome. This study illustrates that incipient shorebird species with gene flow after secondary contact can exhibit discrete divergence at specific genomic regions and provides basis to further exploration on the genetic basis of relevant phenotypic traits., (Copyright © 2019 Wang, Maher, Zhang, Que, Zheng, Liu, Wang, Huang, Chen, Yang, Zhang, Székely, Urrutia and Liu.)
- Published
- 2019
- Full Text
- View/download PDF
25. Conditional expression explains molecular evolution of social genes in a microbe.
- Author
-
de Oliveira JL, Morales AC, Stewart B, Gruenheit N, Engelmoer J, Brown SB, de Brito RA, Hurst LD, Urrutia AO, Thompson CRL, and Wolf JB
- Subjects
- Dictyostelium physiology, Dictyostelium genetics, Evolution, Molecular, Microbial Interactions genetics
- Abstract
Conflict is thought to play a critical role in the evolution of social interactions by promoting diversity or driving accelerated evolution. However, despite our sophisticated understanding of how conflict shapes social traits, we have limited knowledge of how it impacts molecular evolution across the underlying social genes. Here we address this problem by analyzing the genome-wide impact of social interactions using genome sequences from 67 Dictyostelium discoideum strains. We find that social genes tend to exhibit enhanced polymorphism and accelerated evolution. However, these patterns are not consistent with conflict driven processes, but instead reflect relaxed purifying selection. This pattern is most likely explained by the conditional nature of social interactions, whereby selection on genes expressed only in social interactions is diluted by generations of inactivity. This dilution of selection by inactivity enhances the role of drift, leading to increased polymorphism and accelerated evolution, which we call the Red King process.
- Published
- 2019
- Full Text
- View/download PDF
26. Postmitotic cell longevity-associated genes: a transcriptional signature of postmitotic maintenance in neural tissues.
- Author
-
Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, and Gutiérrez H
- Subjects
- Animals, Cerebral Cortex metabolism, Down-Regulation, Fibroblasts pathology, Gene Expression, Genome-Wide Association Study, Humans, Macaca, Neurodegenerative Diseases etiology, Neurodegenerative Diseases genetics, Neurodegenerative Diseases pathology, Sex Characteristics, Substantia Nigra metabolism, Transcriptome genetics, Cell Survival genetics, Mitosis genetics, Neurons, Transcription, Genetic genetics
- Abstract
Different cell types have different postmitotic maintenance requirements. Nerve cells, however, are unique in this respect as they need to survive and preserve their functional complexity for the entire lifetime of the organism, and failure at any level of their supporting mechanisms leads to a wide range of neurodegenerative conditions. Whether these differences across tissues arise from the activation of distinct cell type-specific maintenance mechanisms or the differential activation of a common molecular repertoire is not known. To identify the transcriptional signature of postmitotic cellular longevity (PMCL), we compared whole-genome transcriptome data from human tissues ranging in longevity from 120 days to over 70 years and found a set of 81 genes whose expression levels are closely associated with increased cell longevity. Using expression data from 10 independent sources, we found that these genes are more highly coexpressed in longer-living tissues and are enriched in specific biological processes and transcription factor targets compared with randomly selected gene samples. Crucially, we found that PMCL-associated genes are downregulated in the cerebral cortex and substantia nigra of patients with Alzheimer's and Parkinson's disease, respectively, as well as Hutchinson-Gilford progeria-derived fibroblasts, and that this downregulation is specifically linked to their underlying association with cellular longevity. Moreover, we found that sexually dimorphic brain expression of PMCL-associated genes reflects sexual differences in lifespan in humans and macaques. Taken together, our results suggest that PMCL-associated genes are part of a generalized machinery of postmitotic maintenance and functional stability in both neural and non-neural cells and support the notion of a common molecular repertoire differentially engaged in different cell types with different survival requirements., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
27. Conserved transcriptomic profiles underpin monogamy across vertebrates.
- Author
-
Young RL, Ferkin MH, Ockendon-Powell NF, Orr VN, Phelps SM, Pogány Á, Richards-Zawacki CL, Summers K, Székely T, Trainor BC, Urrutia AO, Zachar G, O'Connell LA, and Hofmann HA
- Subjects
- Animals, Anura genetics, Arvicolinae genetics, Brain physiology, Cichlids genetics, Gene Expression genetics, Male, Mice, Pair Bond, Peromyscus genetics, Phylogeny, Reproduction genetics, Sexual Behavior, Animal physiology, Songbirds genetics, Species Specificity, Transcriptome genetics, Vertebrates genetics
- Abstract
Social monogamy, typically characterized by the formation of a pair bond, increased territorial defense, and often biparental care, has independently evolved multiple times in animals. Despite the independent evolutionary origins of monogamous mating systems, several homologous brain regions and neuropeptides and their receptors have been shown to play a conserved role in regulating social affiliation and parental care, but little is known about the neuromolecular mechanisms underlying monogamy on a genomic scale. Here, we compare neural transcriptomes of reproductive males in monogamous and nonmonogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. We find that, while evolutionary divergence time between species or clades did not explain gene expression similarity, characteristics of the mating system correlated with neural gene expression patterns, and neural gene expression varied concordantly across vertebrates when species transition to monogamy. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates., Competing Interests: The authors declare no conflict of interest
- Published
- 2019
- Full Text
- View/download PDF
28. Perspectives on the history of evo-devo and the contemporary research landscape in the genomics era.
- Author
-
Tickle C and Urrutia AO
- Subjects
- Animals, Biological Evolution, Developmental Biology, Genomics
- Abstract
A fundamental question in biology is how the extraordinary range of living organisms arose. In this theme issue, we celebrate how evolutionary studies on the origins of morphological diversity have changed over the past 350 years since the first publication of the Philosophical Transactions of The Royal Society Current understanding of this topic is enriched by many disciplines, including anatomy, palaeontology, developmental biology, genetics and genomics. Development is central because it is the means by which genetic information of an organism is translated into morphology. The discovery of the genetic basis of development has revealed how changes in form can be inherited, leading to the emergence of the field known as evolutionary developmental biology (evo-devo). Recent approaches include imaging, quantitative morphometrics and, in particular, genomics, which brings a new dimension. Articles in this issue illustrate the contemporary evo-devo field by considering general principles emerging from genomics and how this and other approaches are applied to specific questions about the evolution of major transitions and innovations in morphology, diversification and modification of structures, intraspecific morphological variation and developmental plasticity. Current approaches enable a much broader range of organisms to be studied, thus building a better appreciation of the origins of morphological diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'., (© 2016 The Author(s).)
- Published
- 2017
- Full Text
- View/download PDF
29. Alternative splicing and the evolution of phenotypic novelty.
- Author
-
Bush SJ, Chen L, Tovar-Corona JM, and Urrutia AO
- Subjects
- Animals, Evolution, Molecular, Gene Duplication, Transcriptome, Alternative Splicing, Biological Evolution, Phenotype
- Abstract
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'., (© 2016 The Author(s).)
- Published
- 2017
- Full Text
- View/download PDF
30. Neocortex expansion is linked to size variations in gene families with chemotaxis, cell-cell signalling and immune response functions in mammals.
- Author
-
Castillo-Morales A, Monzón-Sandoval J, de Sousa AA, Urrutia AO, and Gutierrez H
- Subjects
- Animals, Cell Communication, Gene Expression Regulation, Developmental, Gene Ontology, Genomics, Humans, Mammals anatomy & histology, Neocortex growth & development, Organ Size, Phylogeny, Chemotaxis genetics, Mammals genetics, Multigene Family, Neocortex anatomy & histology
- Abstract
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell-cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages., (© 2016 The Authors.)
- Published
- 2016
- Full Text
- View/download PDF
31. Modular reorganization of the global network of gene regulatory interactions during perinatal human brain development.
- Author
-
Monzón-Sandoval J, Castillo-Morales A, Urrutia AO, and Gutierrez H
- Subjects
- Adolescent, Brain anatomy & histology, Brain embryology, Child, Child, Preschool, Female, Gene Expression Profiling, Humans, Infant, Models, Biological, Pregnancy, Brain growth & development, Brain metabolism, Genes, Regulator
- Abstract
Background: During early development of the nervous system, gene expression patterns are known to vary widely depending on the specific developmental trajectories of different structures. Observable changes in gene expression profiles throughout development are determined by an underlying network of precise regulatory interactions between individual genes. Elucidating the organizing principles that shape this gene regulatory network is one of the central goals of developmental biology. Whether the developmental programme is the result of a dynamic driven by a fixed architecture of regulatory interactions, or alternatively, the result of waves of regulatory reorganization is not known., Results: Here we contrast these two alternative models by examining existing expression data derived from the developing human brain in prenatal and postnatal stages. We reveal a sharp change in gene expression profiles at birth across brain areas. This sharp division between foetal and postnatal profiles is not the result of pronounced changes in level of expression of existing gene networks. Instead we demonstrate that the perinatal transition is marked by the widespread regulatory rearrangement within and across existing gene clusters, leading to the emergence of new functional groups. This rearrangement is itself organized into discrete blocks of genes, each targeted by a distinct set of transcriptional regulators and associated to specific biological functions., Conclusions: Our results provide evidence of an acute modular reorganization of the regulatory architecture of the brain transcriptome occurring at birth, reflecting the reassembly of new functional associations required for the normal transition from prenatal to postnatal brain development.
- Published
- 2016
- Full Text
- View/download PDF
32. Optimization of next-generation sequencing transcriptome annotation for species lacking sequenced genomes.
- Author
-
Ockendon NF, O'Connell LA, Bush SJ, Monzón-Sandoval J, Barnes H, Székely T, Hofmann HA, Dorus S, and Urrutia AO
- Subjects
- Animals, Primates genetics, Drosophila genetics, High-Throughput Nucleotide Sequencing, Molecular Sequence Annotation methods, Transcriptome
- Abstract
Next-generation sequencing methods, such as RNA-seq, have permitted the exploration of gene expression in a range of organisms which have been studied in ecological contexts but lack a sequenced genome. However, the efficacy and accuracy of RNA-seq annotation methods using reference genomes from related species have yet to be robustly characterized. Here we conduct a comprehensive power analysis employing RNA-seq data from Drosophila melanogaster in conjunction with 11 additional genomes from related Drosophila species to compare annotation methods and quantify the impact of evolutionary divergence between transcriptome and the reference genome. Our analyses demonstrate that, regardless of the level of sequence divergence, direct genome mapping (DGM), where transcript short reads are aligned directly to the reference genome, significantly outperforms the widely used de novo and guided assembly-based methods in both the quantity and accuracy of gene detection. Our analysis also reveals that DGM recovers a more representative profile of Gene Ontology functional categories, which are often used to interpret emergent patterns in genomewide expression analyses. Lastly, analysis of available primate RNA-seq data demonstrates the applicability of our observations across diverse taxa. Our quantification of annotation accuracy and reduced gene detection associated with sequence divergence thus provides empirically derived guidelines for the design of future gene expression studies in species without sequenced genomes., (© 2015 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
33. Genes that Escape X-Inactivation in Humans Have High Intraspecific Variability in Expression, Are Associated with Mental Impairment but Are Not Slow Evolving.
- Author
-
Zhang Y, Castillo-Morales A, Jiang M, Zhu Y, Hu L, Urrutia AO, Kong X, and Hurst LD
- Published
- 2016
- Full Text
- View/download PDF
34. Alternative Splice in Alternative Lice.
- Author
-
Tovar-Corona JM, Castillo-Morales A, Chen L, Olds BP, Clark JM, Reynolds SE, Pittendrigh BR, Feil EJ, and Urrutia AO
- Subjects
- Animals, Gene Ontology, Genes, Insect, Humans, Pediculus genetics, Alternative Splicing genetics, Phthiraptera genetics
- Abstract
Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation., (© The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2015
- Full Text
- View/download PDF
35. Lineage-specific sequence evolution and exon edge conservation partially explain the relationship between evolutionary rate and expression level in A. thaliana.
- Author
-
Bush SJ, Kover PX, and Urrutia AO
- Subjects
- Adaptation, Biological genetics, Conserved Sequence, Genome, Plant, Arabidopsis genetics, Evolution, Molecular, Exons, Selection, Genetic
- Abstract
Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the 'edges' of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage-specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage-specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage-specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters., (© 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.)
- Published
- 2015
- Full Text
- View/download PDF
36. Correcting for differential transcript coverage reveals a strong relationship between alternative splicing and organism complexity.
- Author
-
Chen L, Bush SJ, Tovar-Corona JM, Castillo-Morales A, and Urrutia AO
- Subjects
- Animals, Evolution, Molecular, Expressed Sequence Tags, Humans, Phylogeny, Species Specificity, Transcriptome, Alternative Splicing, Biological Evolution, Eukaryota classification, Eukaryota genetics
- Abstract
What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species--an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced N(e) in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome's functional information capacity., (© The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2014
- Full Text
- View/download PDF
37. Presence-absence variation in A. thaliana is primarily associated with genomic signatures consistent with relaxed selective constraints.
- Author
-
Bush SJ, Castillo-Morales A, Tovar-Corona JM, Chen L, Kover PX, and Urrutia AO
- Subjects
- Alternative Splicing, DNA Transposable Elements, Exons, Gene Expression, Open Reading Frames, Sequence Analysis, DNA, Signal Transduction, Arabidopsis genetics, Evolution, Molecular, Genes, Plant, Genetic Variation
- Abstract
The sequencing of multiple genomes of the same plant species has revealed polymorphic gene and exon loss. Genes associated with disease resistance are overrepresented among those showing structural variations, suggesting an adaptive role for gene and exon presence-absence variation (PAV). To shed light on the possible functional relevance of polymorphic coding region loss and the mechanisms driving this process, we characterized genes that have lost entire exons or their whole coding regions in 17 fully sequenced Arabidopsis thaliana accessions. We found that although a significant enrichment in genes associated with certain functional categories is observed, PAV events are largely restricted to genes with signatures of reduced essentiality: PAV genes tend to be newer additions to the genome, tissue specific, and lowly expressed. In addition, PAV genes are located in regions of lower gene density and higher transposable element density. Partial coding region PAV events were associated with only a marginal reduction in gene expression level in the affected accession and occurred in genes with higher levels of alternative splicing in the Col-0 accession. Together, these results suggest that although adaptive scenarios cannot be ruled out, PAV events can be explained without invoking them.
- Published
- 2014
- Full Text
- View/download PDF
38. Genes that escape X-inactivation in humans have high intraspecific variability in expression, are associated with mental impairment but are not slow evolving.
- Author
-
Zhang Y, Castillo-Morales A, Jiang M, Zhu Y, Hu L, Urrutia AO, Kong X, and Hurst LD
- Subjects
- Animals, Asian People genetics, Cell Line, Evolution, Molecular, Female, Genetic Variation, Humans, Male, Mice, Mutation Rate, Phenotype, Polymorphism, Single Nucleotide, Sequence Analysis, RNA, White People genetics, X Chromosome, Gene Expression, Genes, X-Linked, Intellectual Disability genetics, X Chromosome Inactivation
- Abstract
In female mammals most X-linked genes are subject to X-inactivation. However, in humans some X-linked genes escape silencing, these escapees being candidates for the phenotypic aberrations seen in polyX karyotypes. These escape genes have been reported to be under stronger purifying selection than other X-linked genes. Although it is known that escape from X-inactivation is much more common in humans than in mice, systematic assays of escape in humans have to date employed only interspecies somatic cell hybrids. Here we provide the first systematic next-generation sequencing analysis of escape in a human cell line. We analyzed RNA and genotype sequencing data obtained from B lymphocyte cell lines derived from Europeans (CEU) and Yorubans (YRI). By replicated detection of heterozygosis in the transcriptome, we identified 114 escaping genes, including 76 not previously known to be escapees. The newly described escape genes cluster on the X chromosome in the same chromosomal regions as the previously known escapees. There is an excess of escaping genes associated with mental retardation, consistent with this being a common phenotype of polyX phenotypes. We find both differences between populations and between individuals in the propensity to escape. Indeed, we provide the first evidence for there being both hyper- and hypo-escapee females in the human population, consistent with the highly variable phenotypic presentation of polyX karyotypes. Considering also prior data, we reclassify genes as being always, never, and sometimes escape genes. We fail to replicate the prior claim that genes that escape X-inactivation are under stronger purifying selection than others.
- Published
- 2013
- Full Text
- View/download PDF
39. Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions.
- Author
-
Castillo-Morales A, Monzón-Sandoval J, Urrutia AO, and Gutiérrez H
- Subjects
- Animals, Biological Evolution, Evolution, Molecular, Genomics, Humans, Multigene Family, Organ Size, Phylogeny, Sequence Analysis, DNA, Signal Transduction genetics, Species Specificity, Brain anatomy & histology, Chemotaxis genetics, Mammals anatomy & histology
- Abstract
Genomic determinants underlying increased encephalization across mammalian lineages are unknown. Whole genome comparisons have revealed large and frequent changes in the size of gene families, and it has been proposed that these variations could play a major role in shaping morphological and physiological differences among species. Using a genome-wide comparative approach, we examined changes in gene family size (GFS) and degree of encephalization in 39 fully sequenced mammalian species and found a significant over-representation of GFS variations in line with increased encephalization in mammals. We found that this relationship is not accounted for by known correlates of brain size such as maximum lifespan or body size and is not explained by phylogenetic relatedness. Genes involved in chemotaxis, immune regulation and cell signalling-related functions are significantly over-represented among those gene families most highly correlated with encephalization. Genes within these families are prominently expressed in the human brain, particularly the cortex, and organized in co-expression modules that display distinct temporal patterns of expression in the developing cortex. Our results suggest that changes in GFS associated with encephalization represent an evolutionary response to the specific functional requirements underlying increased brain size in mammals.
- Published
- 2013
- Full Text
- View/download PDF
40. Evidence for deep phylogenetic conservation of exonic splice-related constraints: splice-related skews at exonic ends in the brown alga Ectocarpus are common and resemble those seen in humans.
- Author
-
Wu X, Tronholm A, Cáceres EF, Tovar-Corona JM, Chen L, Urrutia AO, and Hurst LD
- Subjects
- Animals, Computational Biology, Drosophila genetics, Exons, Humans, Introns, Phaeophyceae genetics, Phylogeny, RNA Splicing genetics, Regulatory Sequences, Nucleic Acid, Codon genetics, Enhancer Elements, Genetic, Evolution, Molecular, RNA Splice Sites genetics
- Abstract
The control of RNA splicing is often modulated by exonic motifs near splice sites. Chief among these are exonic splice enhancers (ESEs). Well-described ESEs in mammals are purine rich and cause predictable skews in codon and amino acid usage toward exonic ends. Looking across species, those with relatively abundant intronic sequence are those with the more profound end of exon skews, indicative of exonization of splice site recognition. To date, the only intron-rich species that have been analyzed are mammals, precluding any conclusions about the likely ancestral condition. Here, we examine the patterns of codon and amino acid usage in the vicinity of exon-intron junctions in the brown alga Ectocarpus siliculosus, a species with abundant large introns, known SR proteins, and classical splice sites. We find that amino acids and codons preferred/avoided at both 3' and 5' ends in Ectocarpus, of which there are many, tend, on average, to also be preferred/avoided at the same exon ends in humans. Moreover, the preferences observed at the 5' ends of exons are largely the same as those at the 3' ends, a symmetry trend only previously observed in animals. We predict putative hexameric ESEs in Ectocarpus and show that these are purine rich and that there are many more of these identified as functional ESEs in humans than expected by chance. These results are consistent with deep phylogenetic conservation of SR protein binding motifs. Assuming codons preferred near boundaries are "splice optimal" codons, in Ectocarpus, unlike Drosophila, splice optimal and translationally optimal codons are not mutually exclusive. The exclusivity of translationally optimal and splice optimal codon sets is thus not universal.
- Published
- 2013
- Full Text
- View/download PDF
41. Alternative splicing: a potential source of functional innovation in the eukaryotic genome.
- Author
-
Chen L, Tovar-Corona JM, and Urrutia AO
- Abstract
Alternative splicing (AS) is a common posttranscriptional process in eukaryotic organisms, by which multiple distinct functional transcripts are produced from a single gene. The release of the human genome draft revealed a much smaller number of genes than anticipated. Because of its potential role in expanding protein diversity, interest in alternative splicing has been increasing over the last decade. Although recent studies have shown that 94% human multiexon genes undergo AS, evolution of AS and thus its potential role in functional innovation in eukaryotic genomes remain largely unexplored. Here we review available evidence regarding the evolution of AS prevalence and functional role. In addition we stress the need to correct for the strong effect of transcript coverage in AS detection and set out a strategy to ultimately elucidate the extent of the role of AS in functional innovation on a genomic scale.
- Published
- 2012
- Full Text
- View/download PDF
42. Increased levels of noisy splicing in cancers, but not for oncogene-derived transcripts.
- Author
-
Chen L, Tovar-Corona JM, and Urrutia AO
- Subjects
- Alternative Splicing genetics, Animals, Humans, Mice, Neoplasms genetics, Oncogenes genetics, RNA Splicing genetics
- Abstract
Recent genome-wide analyses have detected numerous cancer-specific alternative splicing (AS) events. Whether transcripts containing cancer-specific AS events are likely to be translated into functional proteins or simply reflect noisy splicing, thereby determining their clinical relevance, is not known. Here we show that consistent with a noisy-splicing model, cancer-specific AS events generally tend to be rare, containing more premature stop codons and have less identifiable functional domains in both the human and mouse. Interestingly, common cancer-derived AS transcripts from tumour suppressor and oncogenes show marked changes in premature stop-codon frequency; with tumour suppressor genes exhibiting increased levels of premature stop codons whereas oncogenes have the opposite pattern. We conclude that tumours tend to have faithful oncogene splicing and a higher incidence of premature stop codons among tumour suppressor and cancer-specific splice variants showing the importance of considering splicing noise when analysing cancer-specific splicing changes.
- Published
- 2011
- Full Text
- View/download PDF
43. Protein amino acid composition: a genomic signature of encephalization in mammals.
- Author
-
Gutierrez H, Castillo A, Monzon J, and Urrutia AO
- Subjects
- Animals, Brain anatomy & histology, Gene Expression Regulation, Humans, Models, Biological, Organ Size genetics, Organ Specificity genetics, Regression Analysis, Amino Acids metabolism, Brain growth & development, Brain metabolism, Genome genetics, Mammals genetics, Proteins chemistry
- Abstract
Large brains relative to body size represent an evolutionarily costly adaptation as they are metabolically expensive and demand substantial amounts of time to reach structural and functional maturity thereby exacerbating offspring mortality while delaying reproductive age. In spite of its cost and adaptive impact, no genomic features linked to brain evolution have been found. By conducting a genome-wide analysis in all 37 fully sequenced mammalian genomes, we show that encephalization is significantly correlated with overall protein amino acid composition. This correlation is not a by-product of changes in nucleotide content, lifespan, body size, absolute brain size or genome size; is independent of phylogenetic effects; and is not restricted to brain expressed genes. This is the first report of a relationship between this fundamental and complex trait and changes in protein AA usage, possibly reflecting the high selective demands imposed by the process of encephalization across mammalian lineages.
- Published
- 2011
- Full Text
- View/download PDF
44. Do Alu repeats drive the evolution of the primate transcriptome?
- Author
-
Urrutia AO, Ocaña LB, and Hurst LD
- Subjects
- Alu Elements genetics, Animals, CpG Islands, Humans, Mice, Alu Elements physiology, Evolution, Molecular, Gene Expression Regulation, Genome, Human, Transcription, Genetic
- Abstract
Background: Of all repetitive elements in the human genome, Alus are unusual in being enriched near to genes that are expressed across a broad range of tissues. This has led to the proposal that Alus might be modifying the expression breadth of neighboring genes, possibly by providing CpG islands, modifying transcription factor binding, or altering chromatin structure. Here we consider whether Alus have increased expression breadth of genes in their vicinity., Results: Contrary to the modification hypothesis, we find that those genes that have always had broad expression are richest in Alus, whereas those that are more likely to have become more broadly expressed have lower enrichment. This finding is consistent with a model in which Alus accumulate near broadly expressed genes but do not affect their expression breadth. Furthermore, this model is consistent with the finding that expression breadth of mouse genes predicts Alu density near their human orthologs. However, Alus were found to be related to some alternative measures of transcription profile divergence, although evidence is contradictory as to whether Alus associate with lowly or highly diverged genes. If Alu have any effect it is not by provision of CpG islands, because they are especially rare near to transcriptional start sites. Previously reported Alu enrichment for genes serving certain cellular functions, suggested to be evidence of functional importance of Alus, appears to be partly a byproduct of the association with broadly expressed genes., Conclusion: The abundance of Alu near broadly expressed genes is better explained by their preferential preservation near to housekeeping genes rather than by a modifying effect on expression of genes.
- Published
- 2008
- Full Text
- View/download PDF
45. Chromatin remodelling is a major source of coexpression of linked genes in yeast.
- Author
-
Batada NN, Urrutia AO, and Hurst LD
- Subjects
- Evolution, Molecular, Genome, Fungal, Nucleosomes metabolism, Transcription, Genetic, Chromatin Assembly and Disassembly, Gene Expression Regulation, Fungal, Saccharomyces cerevisiae genetics
- Abstract
In diverse organisms, neighbouring genes in the genome tend to be positively coexpressed more than expected by chance. When the similarity of transcription regulation is controlled for, adjacent genes have much higher coexpression rates than unlinked genes, supporting a role for chromatin modelling. Consequently, many incidences of low-to-moderate level coexpression of linked genes might well be spurious rather than an indication of functional coordination. These results have implications for gene therapy and for understanding gene order evolution, suggesting that chromosomal proximity alone is adequate to achieve some level of coexpression.
- Published
- 2007
- Full Text
- View/download PDF
46. Splicing and the evolution of proteins in mammals.
- Author
-
Parmley JL, Urrutia AO, Potrzebowski L, Kaessmann H, and Hurst LD
- Subjects
- Amino Acids chemistry, Animals, Exons, Humans, Introns, Mice, Models, Genetic, RNA Splice Sites, Retroelements, Alternative Splicing, Evolution, Molecular, Proteins genetics
- Abstract
It is often supposed that a protein's rate of evolution and its amino acid content are determined by the function and anatomy of the protein. Here we examine an alternative possibility, namely that the requirement to specify in the unprocessed RNA, in the vicinity of intron-exon boundaries, information necessary for removal of introns (e.g., exonic splice enhancers) affects both amino acid usage and rates of protein evolution. We find that the majority of amino acids show skewed usage near intron-exon boundaries, and that differences in the trends for the 2-fold and 4-fold blocks of both arginine and leucine show this to be owing to effects mediated at the nucleotide level. More specifically, there is a robust relationship between the extent to which an amino acid is preferred/avoided near boundaries and its enrichment/paucity in splice enhancers. As might then be expected, the rate of evolution is lowest near intron-exon boundaries, at least in part owing to splice enhancers, such that domains flanking intron-exon junctions evolve on average at under half the rate of exon centres from the same gene. In contrast, the rate of evolution of intronless retrogenes is highest near the domains where intron-exon junctions previously resided. The proportion of sequence near intron-exon boundaries is one of the stronger predictors of a protein's rate of evolution in mammals yet described. We conclude that after intron insertion selection favours modification of amino acid content near intron-exon junctions, so as to enable efficient intron removal, these changes then being subject to strong purifying selection even if nonoptimal for protein function. Thus there exists a strong force operating on protein evolution in mammals that is not explained directly in terms of the biology of the protein.
- Published
- 2007
- Full Text
- View/download PDF
47. A unification of mosaic structures in the human genome.
- Author
-
Lercher MJ, Urrutia AO, Pavlícek A, and Hurst LD
- Subjects
- Azure Stains metabolism, Base Composition, Chromosome Banding, Chromosome Mapping, Chromosomes, Human chemistry, Chromosomes, Human, Pair 11, Expressed Sequence Tags, GC Rich Sequence, Gene Expression Regulation, Gene Order, Humans, In Situ Hybridization, Fluorescence, Introns, Isochores chemistry, Linear Models, RNA, Messenger chemistry, Recombination, Genetic, Transcription, Genetic, Chromosomes, Human metabolism, Genes genetics, Genome, Human, Isochores genetics
- Abstract
The human genome is a mosaic structure on many levels: there exist cytogenetic bands, GC composition bands (isochores) and clusters of broadly expressed genes. How might these inter-relate? It has been proposed that to optimize gene regulation, housekeeping genes should concentrate on transcriptionally competent chromosomal domains. Prior evidence suggests that regions of high GC and R bands are associated with such domains. Here we report that broadly expressed genes cluster in regions of high GC, and in R and lightest Giemsa bands. This is not only a confirmation of the adaptive hypothesis, but is also the first direct systematic evidence of a general interdependence of expression patterns with base composition and chromosome structure.
- Published
- 2003
- Full Text
- View/download PDF
48. The signature of selection mediated by expression on human genes.
- Author
-
Urrutia AO and Hurst LD
- Subjects
- Chromosome Mapping methods, Gene Expression Profiling statistics & numerical data, Genetic Linkage genetics, Genetics, Population, Humans, Peptide Biosynthesis genetics, Protein Biosynthesis, Proteins genetics, Transcription, Genetic, Gene Expression Regulation genetics, Selection, Genetic
- Abstract
As the efficacy of natural selection is expected to be a function of population size, in humans it is usually presumed that selection is a weak force and hence that gene characteristics are mostly determined by stochastic forces. In contrast, in species with large population sizes, selection is expected to be a much more effective force. Evidence for this has come from examining how genic parameters vary with expression level, which appears to determine many of a gene's features, such as codon bias, amino acid composition, and size. However, not until now has it been possible to examine whether human genes show the signature of selection mediated by expression level. Here, then, to investigate this issue, we gathered expression data for >10,000 human genes from public data sets obtained by different technologies (SAGE and high-density oligonucleotide chip arrays) and compared them with gene parameters. We find that, even after controlling for regional effects, highly expressed genes code for smaller proteins, have less intronic DNA, and higher codon and amino acid biases. We conclude that, contrary to the usual supposition, human genes show signatures consistent with selection mediated by expression level.
- Published
- 2003
- Full Text
- View/download PDF
49. Evidence that the human X chromosome is enriched for male-specific but not female-specific genes.
- Author
-
Lercher MJ, Urrutia AO, and Hurst LD
- Subjects
- Animals, Drosophila melanogaster genetics, Female, Genetic Linkage genetics, Humans, Male, Mammary Glands, Human physiology, Mice, Ovary physiology, Polymorphism, Genetic genetics, Prostate physiology, Reproduction genetics, Spermatogonia physiology, Biological Evolution, Gene Expression, Genetic Variation genetics, Sex Characteristics, X Chromosome genetics
- Abstract
There is increasing evidence that X chromosomes have an unusual complement of genes, especially genes that have sex-specific expression. However, whereas in worm and fly the X chromosome has a dearth of male-specific genes, in mice genes that are uniquely expressed in spermatogonia are especially abundant on the X chromosome. Is this latter enrichment true for nongermline, male-specific genes in mammals, and is it found also for female-specific genes? Here, using SAGE data, we show (1) that tissue-specific genes tend to be more abundant on the human X chromosome, (2) that, controlling for this effect, genes expressed exclusively in prostate are enriched on the human X chromosome, and (3) that genes expressed exclusively in mammary gland and ovary are not so enriched. This we propose is consistent with Rice's model of the evolution of sexually antagonistic alleles.
- Published
- 2003
- Full Text
- View/download PDF
50. Clustering of housekeeping genes provides a unified model of gene order in the human genome.
- Author
-
Lercher MJ, Urrutia AO, and Hurst LD
- Subjects
- Humans, Organ Specificity genetics, Gene Order, Genome, Human
- Abstract
It is often supposed that, except for tandem duplicates, genes are randomly distributed throughout the human genome. However, recent analyses suggest that when all the genes expressed in a given tissue (notably placenta and skeletal muscle) are examined, these genes do not map to random locations but instead resolve to clusters. We have asked three questions: (i) is this clustering true for most tissues, or are these the exceptions; (ii) is any clustering simply the result of the expression of tandem duplicates and (iii) how, if at all, does this relate to the observed clustering of genes with high expression rates? We provide a unified model of gene clustering that explains the previous observations. We examined Serial Analysis of Gene Expression (SAGE) data for 14 tissues and found significant clustering, in each tissue, that persists even after the removal of tandem duplicates. We confirmed clustering by analysis of independent expressed-sequence tag (EST) data. We then tested the possibility that the human genome is organized into subregions, each specializing in genes needed in a given tissue. By comparing genes expressed in different tissues, we show that this is not the case: those genes that seem to be tissue-specific in their expression do not, as a rule, cluster. We report that genes that are expressed in most tissues (housekeeping genes) show strong clustering. In addition, we show that the apparent clustering of genes with high expression rates is a consequence of the clustering of housekeeping genes.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.