11 results on '"Uzan, Eva"'
Search Results
2. Transgenic rice as a novel production system for Melanocarpus and Pycnoporus laccases
- Author
-
de Wilde, Chris, Uzan, Eva, Zhou, Zhongyi, Kruus, Kristiina, Andberg, Martina, Buchert, Johanna, Record, Eric, Asther, Marcel, and Lomascolo, Anne
- Published
- 2008
- Full Text
- View/download PDF
3. Method for Producing Lactones from a Strain of Aureobasidium Pullulans
- Author
-
Alphand, Véronique, Archelas, Alain, Boukhris-Uzan, Eva, Courvoisier-Dezord, Elise, Sophie, Lavoine-Hanneguelle, Institut des Sciences Moléculaires de Marseille (ISM2), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC), Société Charabot, Alphand, Véronique, and Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] - Published
- 2015
4. The genome of the white-rot fungus [i]Pycnoporus cinnabarinus[/i]: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown
- Author
-
Levasseur, Anthony, Lomascolo, Anne, Chabrol, Olivier, Ruiz-Dueñas, Francisco J, Boukhris-Uzan, Eva, Piumi, François, Kües, Ursula, Ram, Arthur F J, Murat, Claude, Haon, Mireille, Benoit, Isabelle, Arfi, Yonathan, Chevret, Didier, Drula, Elodie, Kwon, Min Jin, Gouret, Philippe, Lesage-Meessen, Laurence, Lombard, Vincent, Mariette, Jérôme, Noirot, Céline, Park, Joohae, Patyshakuliyeva, Aleksandrina, Sigoillot, Jean Claude, Wiebenga, Ad, Wösten, Han A B, Martin, Francis, Coutinho, Pedro M, de Vries, Ronald P, Martínez, Angel T, Klopp, Christophe, Pontarotti, Pierre, Henrissat, Bernard, Record, Eric, Wosten, Han, Molecular Microbiology, Sub Molecular Microbiology, Sub Molecular Plant Physiology, Molecular Plant Physiology, Biodiversité et Biotechnologie Fongiques (BBF), École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centro de Investigaciones Biológicas (CIB), Institut des Sciences Moléculaires de Marseille (ISM2), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Molecular Wood Biotechnology and Technical Mycology, Georg-August-University [Göttingen], Department of Molecular Microbiology and Biotechnology, Universiteit Leiden [Leiden], Interactions Arbres-Microorganismes (IAM), Université de Lorraine (UL)-Institut National de la Recherche Agronomique (INRA), Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Faculty of Biological Chemistry, Weizmann Institute of Science, MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Architecture et fonction des macromolécules biologiques (AFMB), Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Unité de Biométrie et Intelligence Artificielle (UBIA), Institut National de la Recherche Agronomique (INRA), Department of Microbiology, Kluyver Cenre for Genomics of Industrial Fermentation, Utrecht University [Utrecht], Molecular Microbiology, Sub Molecular Microbiology, Sub Molecular Plant Physiology, Molecular Plant Physiology, Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Georg-August-University = Georg-August-Universität Göttingen, Universiteit Leiden, Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL), Weizmann Institute of Science [Rehovot, Israël], Unité de Biométrie et Intelligence Artificielle (ancêtre de MIAT) (UBIA), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), European Commission, and Ministerio de Economía y Competitividad (España)
- Subjects
CAZy ,Glycosylation ,Proteome ,Auxiliary activities ,[SDV]Life Sciences [q-bio] ,7. Clean energy ,Lignin ,Fungal Proteins ,03 medical and health sciences ,chemistry.chemical_compound ,Manganese peroxidase ,Botany ,Genetics ,Versatile peroxidase ,030304 developmental biology ,2. Zero hunger ,0303 health sciences ,Fungal protein ,biology ,030306 microbiology ,Molecular Sequence Annotation ,Lignin peroxidase ,Pycnoporus cinnabarinus ,Sequence Analysis, DNA ,biology.organism_classification ,Wood ,Pycnoporus ,White-rot fungi ,chemistry ,Peroxidases ,Genetic Loci ,Oxidoreductase ,Genome, Fungal ,Protein Processing, Post-Translational ,Lignocellulose ,Biotechnology ,Research Article ,Genome annotation - Abstract
24 p.-8 fig.-4 tab.-- Levasseur, Anthony et al., [Background] Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology., [Results] The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases., [Conclusions] With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass., This work was funded by the Commission of the European Communities through the BIORENEW project (NMP2-CT-2006-026456 “White Biotechnology for added-value products from re newable plant polymers: Design of tailor-made biocatalysts and new industrial bioprocesses”) and the PEROXICATS project (KBBE-2010-4-265397 “Novel and more robust fungal peroxidases as industrial biocatalysts.”), and by the Spanish Ministerio de Economía y Competitividad (MINECO) through the HIPOP project (BIO2011-26694, “Screening and engineering of new high-redox-potential peroxidases”).
- Published
- 2014
- Full Text
- View/download PDF
5. Fungal Strategies for Lignin Degradation
- Author
-
Sigoillot, Jean-Claude, Berrin, Jean-Guy, Bey, Mathieu, Lesage-Meessen, Laurence, Levasseur, Anthony, Lomascolo, Anne, Record, Eric, Boukhris-uzan, Eva, Biodiversité et Biotechnologie Fongiques (BBF), Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)-École Centrale de Marseille (ECM), and École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)
- Subjects
ERYNGII VERSATILE PEROXIDASE ,MANGANESE PEROXIDASE ,PLEUROTUS-ERYNGII ,[SDV]Life Sciences [q-bio] ,fungi ,technology, industry, and agriculture ,food and beverages ,macromolecular substances ,FLAVOCYTOCHROME CELLOBIOSE DEHYDROGENASE ,BROWN-ROT ,complex mixtures ,BASIDIOMYCETE PHANEROCHAETE-CHRYSOSPORIUM ,MULTIPLE SEQUENCE ALIGNMENT ,ARYL-ALCOHOL OXIDASE ,SITE-DIRECTED MUTAGENESIS ,WHITE-ROT FUNGUS - Abstract
Document Type : Book Chapter; A number of microorganisms, bacteria and filamentous fungi, are able to degrade lignocellulosic components to various extents. However, only a few ones can degrade lignins, among which wood-rotting fungi. White-rot fungi, the most frequent ones, mineralize cell wall components (cellulose, hemicelluloses and lignins) and extensively degrade lignins, which results in a bleached aspect of decayed wood. Fungal lignin degradation involves secreted heme-peroxidases and laccases that use oxidants as electron acceptors (H2O2 and O-2). The three main heme-peroxidases are lignin peroxidases, manganese peroxidases and versatile peroxidases. Lignin and versatile peroxidases are able to oxidize non-phenolic lignin units. By contrast, manganese peroxidase needs diffusible Mn-chelated ions and mainly degrades lignin units with free phenolic groups. Other peroxidases have been recently found, such as dye peroxidases with potential applications in bioremediation and other industrial processes. Peroxidases need the cooperation of other oxidases such as glyoxal or aryl-alcohol oxidases to produce hydrogen peroxide. The recent availability of complete fungal genomes opens innovative opportunities to annotate lignocellulolytic gene families. Phylogenetic approaches are unique tools to comparatively analyse these data and predict or infer gene function. The increasing number of putative lignin-degrading enzymes emerging from genome analyses requires the development of high-throughput expression systems to meet the demands of industries. Several expression systems have been developed to produce more efficient recombinant 'ligninases' and auxiliary enzymes. Fungi and yeasts are useful hosts for the production of recombinant enzymes, but only a few ones are devoted to ligninase production. In this review, we give a survey of the main fungal and enzymatic actors of lignin degradation before discussing the phylogenetic inference strategy used to predict lignocellulolytic enzymes and reviewing the recombinant production of these enzymes in fungal hosts.
- Published
- 2012
- Full Text
- View/download PDF
6. The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown
- Author
-
Levasseur, Anthony, Lomascolo, Anne, Chabrol, Olivier, Ruiz-Dueñas, Francisco J, Boukhris-Uzan, Eva, Piumi, François, Kües, Ursula, Ram, Arthur F J, Murat, Claude, Haon, Mireille, Benoit, Isabelle, Arfi, Yonathan, Chevret, Didier, Drula, Elodie, Kwon, Min Jin, Gouret, Philippe, Lesage-Meessen, Laurence, Lombard, Vincent, Mariette, Jérôme, Noirot, Céline, Park, Joohae, Patyshakuliyeva, Aleksandrina, Sigoillot, Jean Claude, Wiebenga, Ad, Wösten, Han A B, Martin, Francis, Coutinho, Pedro M, de Vries, Ronald P, Martínez, Angel T, Klopp, Christophe, Pontarotti, Pierre, Henrissat, Bernard, Record, Eric, Wosten, Han, Levasseur, Anthony, Lomascolo, Anne, Chabrol, Olivier, Ruiz-Dueñas, Francisco J, Boukhris-Uzan, Eva, Piumi, François, Kües, Ursula, Ram, Arthur F J, Murat, Claude, Haon, Mireille, Benoit, Isabelle, Arfi, Yonathan, Chevret, Didier, Drula, Elodie, Kwon, Min Jin, Gouret, Philippe, Lesage-Meessen, Laurence, Lombard, Vincent, Mariette, Jérôme, Noirot, Céline, Park, Joohae, Patyshakuliyeva, Aleksandrina, Sigoillot, Jean Claude, Wiebenga, Ad, Wösten, Han A B, Martin, Francis, Coutinho, Pedro M, de Vries, Ronald P, Martínez, Angel T, Klopp, Christophe, Pontarotti, Pierre, Henrissat, Bernard, Record, Eric, and Wosten, Han
- Abstract
BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology.RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secr
- Published
- 2014
7. The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown
- Author
-
Molecular Microbiology, Sub Molecular Microbiology, Sub Molecular Plant Physiology, Levasseur, Anthony, Lomascolo, Anne, Chabrol, Olivier, Ruiz-Dueñas, Francisco J, Boukhris-Uzan, Eva, Piumi, François, Kües, Ursula, Ram, Arthur F J, Murat, Claude, Haon, Mireille, Benoit, Isabelle, Arfi, Yonathan, Chevret, Didier, Drula, Elodie, Kwon, Min Jin, Gouret, Philippe, Lesage-Meessen, Laurence, Lombard, Vincent, Mariette, Jérôme, Noirot, Céline, Park, Joohae, Patyshakuliyeva, Aleksandrina, Sigoillot, Jean Claude, Wiebenga, Ad, Wösten, Han A B, Martin, Francis, Coutinho, Pedro M, de Vries, Ronald P, Martínez, Angel T, Klopp, Christophe, Pontarotti, Pierre, Henrissat, Bernard, Record, Eric, Wosten, Han, Molecular Microbiology, Sub Molecular Microbiology, Sub Molecular Plant Physiology, Levasseur, Anthony, Lomascolo, Anne, Chabrol, Olivier, Ruiz-Dueñas, Francisco J, Boukhris-Uzan, Eva, Piumi, François, Kües, Ursula, Ram, Arthur F J, Murat, Claude, Haon, Mireille, Benoit, Isabelle, Arfi, Yonathan, Chevret, Didier, Drula, Elodie, Kwon, Min Jin, Gouret, Philippe, Lesage-Meessen, Laurence, Lombard, Vincent, Mariette, Jérôme, Noirot, Céline, Park, Joohae, Patyshakuliyeva, Aleksandrina, Sigoillot, Jean Claude, Wiebenga, Ad, Wösten, Han A B, Martin, Francis, Coutinho, Pedro M, de Vries, Ronald P, Martínez, Angel T, Klopp, Christophe, Pontarotti, Pierre, Henrissat, Bernard, Record, Eric, and Wosten, Han
- Published
- 2014
8. The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown
- Author
-
Levasseur, Anthony, primary, Lomascolo, Anne, additional, Chabrol, Olivier, additional, Ruiz-Dueñas, Francisco J, additional, Boukhris-Uzan, Eva, additional, Piumi, François, additional, Kües, Ursula, additional, Ram, Arthur F J, additional, Murat, Claude, additional, Haon, Mireille, additional, Benoit, Isabelle, additional, Arfi, Yonathan, additional, Chevret, Didier, additional, Drula, Elodie, additional, Kwon, Min, additional, Gouret, Philippe, additional, Lesage-Meessen, Laurence, additional, Lombard, Vincent, additional, Mariette, Jérôme, additional, Noirot, Céline, additional, Park, Joohae, additional, Patyshakuliyeva, Aleksandrina, additional, Sigoillot, Jean, additional, Wiebenga, Ad, additional, Wösten, Han A B, additional, Martin, Francis, additional, Coutinho, Pedro M, additional, de Vries, Ronald P, additional, Martínez, Angel T, additional, Klopp, Christophe, additional, Pontarotti, Pierre, additional, Henrissat, Bernard, additional, and Record, Eric, additional
- Published
- 2014
- Full Text
- View/download PDF
9. Phylogeographic relationships in the polypore fungus Pycnoporus inferred from molecular data
- Author
-
Lesage-Meessen, Laurence, primary, Haon, Mireille, additional, Uzan, Eva, additional, Levasseur, Anthony, additional, Piumi, François, additional, Navarro, David, additional, Taussac, Sabine, additional, Favel, Anne, additional, and Lomascolo, Anne, additional
- Published
- 2011
- Full Text
- View/download PDF
10. Transgenic rice as a novel production system for Melanocarpus and Pycnoporus laccases
- Author
-
de Wilde, Chris, primary, Uzan, Eva, additional, Zhou, Zhongyi, additional, Kruus, Kristiina, additional, Andberg, Martina, additional, Buchert, Johanna, additional, Record, Eric, additional, Asther, Marcel, additional, and Lomascolo, Anne, additional
- Published
- 2007
- Full Text
- View/download PDF
11. Phylogeographic relationships in the polypore fungus P ycnoporus inferred from molecular data.
- Author
-
Lesage-Meessen, Laurence, Haon, Mireille, Uzan, Eva, Levasseur, Anthony, Piumi, François, Navarro, David, Taussac, Sabine, Favel, Anne, and Lomascolo, Anne
- Subjects
PHYLOGEOGRAPHY ,BIOGEOGRAPHY ,GUMS & resins ,RIBOSOMAL DNA ,NUCLEIC acids - Abstract
The genus P ycnoporus forms a group of four species known especially for producing high redox potential laccases suitable for white biotechnology. A sample of 36 P ycnoporus strains originating from different geographical areas was studied to seek informative molecular markers for the typing of new strains in laboratory culture conditions and to analyse the phylogeographic relationships in this cosmopolitan group. ITS1-5.8 S- ITS2 ribosomal DNA and partial regions of β-tubulin and laccase lac3-1 gene were sequenced. Phylogenetic trees inferred from these sequences clearly differentiated the group of P ycnoporus cinnabarinus strains from the group of P ycnoporus puniceus strains into strongly supported clades (100% bootstrap value). Molecular clustering based on lac 3-1 sequences enabled the distribution of P ycnoporus sanguineus and P ycnoporus coccineus through four distinct, well supported clades and sub-clades. A neotropical sub-clade, grouping the P . sanguineus strains from French Guiana and Venezuela, corresponded to P . sanguineus sensu stricto. A paleotropical sub-clade, clustering the strains from Madagascar, Vietnam and New Caledonia, was defined as P ycnoporus cf. sanguineus. The Australian clade corresponded to P . coccineus sensu stricto. The Eastern Asian region clade, clustering the strains from China and Japan, formed a P . coccineus-like group. Laccase gene ( lac 3-1) analysis within the Pycnoporus species can highlight enzyme functional diversity associated with biogeographical origin. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.