ISI Document Delivery No.: 708HP Times Cited: 8 Cited Reference Count: 77 Cited References: ADAMEC D, 1978, J PHYS OCEANOGR, V8, P1050, DOI 10.1175/1520-0485(1978)0082.0.CO;2 ANDERSON RJ, 1993, J PHYS OCEANOGR, V23, P2153, DOI 10.1175/1520-0485(1993)0232.0.CO;2 Bellanger H., 2007, THESIS ECOLE POLYTEC Bernie DJ, 2005, J CLIMATE, V18, P1190, DOI 10.1175/JCLI3319.1 Bernie DJ, 2007, CLIM DYNAM, V29, P575, DOI 10.1007/s00382-007-0249-6 Bernie DJ, 2008, CLIM DYNAM, V31, P909, DOI 10.1007/s00382-008-0429-z BOUGEAULT P, 1989, MON WEATHER REV, V117, P1872, DOI 10.1175/1520-0493(1989)1172.0.CO;2 Bourles B, 2008, B AM METEOROL SOC, V89, P1111, DOI 10.1175/2008BAMS2462.1 Bourles B, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2002GL015098 Bourles B, 1999, J GEOPHYS RES-OCEANS, V104, P21151, DOI 10.1029/1999JC900058 Bourles B., 2007, CLIVAR NEWSLETTER EX, V41, P7 Bourras D, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC004951 Bunge L, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003704 Caniaux G, 1998, J GEOPHYS RES-OCEANS, V103, P25081, DOI 10.1029/98JC00452 CANIAUX G, 2010, JGR UNPUB Carton JA, 1997, J GEOPHYS RES-OCEANS, V102, P27813, DOI 10.1029/97JC02197 Chen SS, 1997, Q J ROY METEOR SOC, V123, P357, DOI 10.1002/qj.49712353806 Clayson CA, 1999, J PHYS OCEANOGR, V29, P2146, DOI 10.1175/1520-0485(1999)0292.0.CO;2 Clayson CA, 2002, J CLIMATE, V15, P1805, DOI 10.1175/1520-0442(2002)0152.0.CO;2 CRAWFORD WR, 1979, DEEP SEA RES 2, V6, P285 Cronin MF, 1997, J GEOPHYS RES-OCEANS, V102, P8533, DOI 10.1029/97JC00020 Cronin MF, 2009, J PHYS OCEANOGR, V39, P1200, DOI 10.1175/2008JPO4064.1 Dai A, 2004, J CLIMATE, V17, P930, DOI 10.1175/1520-0442(2004)0172.0.CO;2 Danabasoglu G, 2006, J CLIMATE, V19, P2347, DOI 10.1175/JCLI3739.1 DeCosmo J, 1996, J GEOPHYS RES-OCEANS, V101, P12001, DOI 10.1029/95JC03796 DENGLER M, 2010, GEOPHYS RES IN PRESS DOURADO MS, 2004, REV BRASILIERIA METE, V19, P217 Fairall CW, 1996, J GEOPHYS RES-OCEANS, V101, P1295, DOI 10.1029/95JC03190 Fairall CW, 2003, J CLIMATE, V16, P571, DOI 10.1175/1520-0442(2003)0162.0.CO;2 Foltz GR, 2003, J GEOPHYS RES-OCEANS, V108, DOI 10.1029/2002JC001584 GASPAR P, 1990, J GEOPHYS RES-OCEANS, V95, P16179, DOI 10.1029/JC095iC09p16179 GIORDANI H, 2010, JGR UNPUB GREGG MC, 1985, NATURE, V318, P140, DOI 10.1038/318140a0 HEBERT D, 1991, J PHYS OCEANOGR, V21, P1690, DOI 10.1175/1520-0485(1991)0212.0.CO;2 Hormann V, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003931 JANICOT A, 2008, ANN GEOPHYS, V26, P2569 Jerlov NG, 1968, OPTICAL OCEANOGRAPHY Josse P., 1999, THESIS U P SABATIER KANTHA LH, 1994, J GEOPHYS RES-OCEANS, V99, P25235, DOI 10.1029/94JC02257 Kolmogorov A.N., 1942, IZV AN SSSR FIZ, V1-2, P56 Kolodziejczyk N, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC004976 LARGE WG, 1994, REV GEOPHYS, V32, P363, DOI 10.1029/94RG01872 LEDUCLEBALLEUR M, 2010, QJRMS UNPUB Lefevre N, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004146 Marin F, 2009, J PHYS OCEANOGR, V39, P1416, DOI 10.1175/2008JPO4030.1 MCCREARY J, 1984, J MAR RES, V42, P81 Merle J., 1980, DEEP SEA RES S2, V26, P77 Mignot J, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003954 MOORE DW, 1978, GEOPHYS RES LETT, V5, P311 MOUM JN, 1985, SCIENCE, V230, P315, DOI 10.1126/science.230.4723.315 MOUM JN, 1992, J PHYS OCEANOGR, V22, P1330, DOI 10.1175/1520-0485(1992)0222.0.CO;2 Pailler K, 1999, GEOPHYS RES LETT, V26, P2069, DOI 10.1029/1999GL900492 PAULSON CA, 1977, J PHYS OCEANOGR, V7, P952, DOI 10.1175/1520-0485(1977)0072.0.CO;2 Persson POG, 2005, Q J ROY METEOR SOC, V131, P877, DOI [10.1256/qj.03.181, 10.1256/jq.03.181] Peter AC, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2005JC003157 Philander S., 1990, NINO NINA SO OSCILLA PHILANDER SGH, 1986, J GEOPHYS RES-OCEANS, V91, P14192, DOI 10.1029/JC091iC12p14192 PICAUT J, 1983, J PHYS OCEANOGR, V13, P18, DOI 10.1175/1520-0485(1983)0132.0.CO;2 Prandke H, 1998, AQUAT SCI, V60, P191, DOI 10.1007/s000270050036 Provost C, 2006, ADV SPACE RES, V37, P823, DOI 10.1016/j.asr.2005.06.018 Redelsperger JL, 2006, B AM METEOROL SOC, V87, P1739, DOI 10.1175/BAMS-87-12-1739 Schmitt RW, 2005, SCIENCE, V308, P685, DOI 10.1126/science.1108678 SCHUDLICH RR, 1992, J GEOPHYS RES-OCEANS, V97, P5409, DOI 10.1029/91JC01918 Shinoda T, 2005, J CLIMATE, V18, P2628, DOI 10.1175/JCLI3432.1 Shinoda T, 1998, J CLIMATE, V11, P2668, DOI 10.1175/1520-0442(1998)0112.0.CO;2 SMITH SD, 1980, J PHYS OCEANOGR, V10, P709, DOI 10.1175/1520-0485(1980)0102.0.CO;2 SPRINTALL J, 1994, J GEOPHYS RES-OCEANS, V99, P963, DOI 10.1029/93JC02809 STRAMMA L, 1999, DEEP SEA RES 2, V4, P279 Stramma L, 2003, ELSEV OCEANOGR SERIE, V68, P1 TAKAHASHI T, 2009, DEEP SEA RES PT II, V0056 Taylor KE, 2001, J GEOPHYS RES-ATMOS, V106, P7183, DOI 10.1029/2000JD900719 VOITURIEZ B, 1977, CAH ORSTOM OCEANOGR, V15, P313 Ward B, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2004JC002689 Weill A, 2003, J CLIMATE, V16, P600, DOI 10.1175/1520-0442(2003)0162.0.CO;2 Woolnough SJ, 2007, Q J ROY METEOR SOC, V133, P117, DOI 10.1002/qj.4 Woolnough SJ, 2000, J CLIMATE, V13, P2086, DOI 10.1175/1520-0442(2000)0132.0.CO;2 Yu LS, 2006, J CLIMATE, V19, P6153, DOI 10.1175/JCLI3970.1 Wade, Malick Caniaux, Guy duPenhoat, Yves Dengler, Marcus Giordani, Herve Hummels, Rebecca Dengler, Marcus/A-7327-2014 Dengler, Marcus/0000-0001-5993-9088 AMMA; European Community This study was supported by the AMMA project. Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, including those in France, the UK, the US, and Africa. It has been the beneficiary of a major financial contribution from the European Community's Sixth Framework Research Program. Detailed information on scientific coordination and funding is available on the AMMA International web site http://www.amma-international.org. We thank Bernard Bourles, the chief scientist of the EGEE program, and all the persons who acquired and prepared the data used in this study as well as the Captain of the RN L'Atalante and his crew for their help during the EGEE-3 cruise. We warmly thank Dr. Gregory Foltz and an anonymous reviewer for their pertinent and useful comments and remarks. 8 SPRINGER HEIDELBERG HEIDELBERG OCEAN DYNAM; A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10 degrees W, 0 degrees N; 10 degrees W, 6 degrees S; and 10 degrees W, 10 degrees S. During the EGEE-3 (Etude de la circulation oceanique et de sa variabilite dans le Golfe de Guinee) campaign of May-June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 Wm(-2) at 0 degrees N and 10 degrees S, respectively, and a cooling tendency of 122 Wm(-2) at 6 degrees S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (similar to 50 m) at 100 degrees S. At 6 degrees and 10 degrees S, the presence of barrier layers is observed, a feature that is clearer at 10 degrees S. Simulated turbulent kinetic energy (11(E) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.