O mecanismo Plataforma de Stewart é um manipulador do tipo paralelo, com seis graus de liberdade, boa relação peso/carga e alta rigidez. Tais características conferem a este tipo de manipulador propriedades superiores de precisão em relação aos manipuladores seriais. Neste trabalho, o controle de um Manipulador Plataforma de Stewart (MPS) acionado por atuadores hidráulicos é estudado com o objetivo de compensação de movimentos para viabilização de transferência de cargas e pessoas em ambiente naval.Visando ao desenvolvimento de um protótipo experimental, o manipulador é estudado considerando a situação em que se encontra sobreposto a um segundo MPS que tem por objetivo simular o movimento da maré, sendo ambos MPS considerados desacoplados dinamicamente. Neste contexto, o estudo envolve a análise cinemática e dinâmica do manipulador incluindo, também, a dinâmica dos cilindros hidráulicos. Além disso, são estudadas unidades de medição inercial (IMU) utilizando-as como instrumento para medição do movimento da base a ser compensado. O projeto do controlador do sistema de atenuação de movimento faz uso da técnica de Torque Computado (TC). A análise de estabilidade, feita separadamente para o sistema mecânico e hidráulico, baseou-se da teoria de Lyapunov. Simulações realizadas considerando trajetórias similares às do movimento de um navio são utilizadas. Para compensação do movimento são utilizados, também, sinais provenientes de uma IMU. Por meio de simulação, comprova-se que o sistema proposto é capaz de compensar adequadamente os movimentos da base estudados. The Stewart platform mechanism is a parallel manipulator with six degrees of freedom, high load/weight ratio and high stifness. These properties give them a better accuracy when compared to serial manipulators. This work focuses on study of electrohydraucally Stewart Platform Manipulators (MPS) to enable compensation of vessels motions for load and personell transfer in sea. Aimed at developing an experimental prototype, a second MPS is placed underneath the rst MPS to simulate vessels motions and so both manipulators are considered dynamically decoupled. In this sense, the kinematics and dynamics of this manipulator are presented, as well as a mathematical model of the hydraulic actuator. Furthermore, special attention is given to the study of inertial measurement units (IMU) which is used as an instrument for measuring the motion to be compensated. Controller design for the compensation system is developed considering compute torque theory which consider the system separated in two: mechanical and hydraulic. The Lyapunov criteria is used to guarantee closed loop stability for each subsystem. Simulations are performed considering similar vessel motions. Signals provided from a comercial IMU are used for motion compensation. The control compensation performance is veri ed by means of computer simulations.