Background Chronic mild hypoxia (CMH, 8% O2) stimulates robust vascular remodelling in the brain, but it also triggers transient vascular disruption. This raises the fundamental question: is the vascular leak an unwanted side-effect of angiogenic remodelling or is it a pathological response, unrelated to endothelial proliferation, in which declining oxygen levels trigger endothelial dysfunction? Methods To answer this question, mice were exposed to CMH (8% O2) for periods up to 14 days, after which, brain tissue was examined by immunofluorescence (IF) to determine which type of blood vessel (arteriole, capillary or venule) was most commonly associated with endothelial proliferation and vascular leak and how this correlated with tight junction protein expression. Vascular perfusion was examined using DiI. Data were analysed using one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison post-hoc test. Results The following was observed: (1) most endothelial proliferation and extravascular fibrinogen leak occurred in capillaries and to a lesser degree in venules, (2) much to our surprise, endothelial proliferation and extravascular fibrinogen leak never colocalized, (3) interestingly however, endothelial proliferation was strongly associated with an intravascular fibrinogen staining pattern not seen in stable blood vessels, (4) DiI perfusion studies revealed that angiogenic vessels were adequately perfused, suggesting that fibrinogen retention in angiogenic vessels is not due to temporary closure of the vessel, but more likely because fibrinogen is retained within the vessel wall, (5) bromodeoxyuridine (BrdU) labelling as a means to more permanently label proliferating endothelial cells, confirmed lack of any connection between endothelial proliferation and extravascular fibrinogen leak, while (6) in contrast, proliferating microglia were detected within extravascular leaks. Conclusions Taken together, our findings support the concept that in the short-term, hypoxia-induced endothelial proliferation triggers transient fibrinogen deposition within the walls of angiogenic blood vessels, but no overt vascular leak occurs in these vessels. Importantly, endothelial proliferation and extravascular fibrinogen leaks never co-localize, demonstrating that extravascular leak is not an unwanted side-effect of angiogenic endothelial proliferation, but rather a dysfunctional vascular response to hypoxia that occurs in a distinct group of non-angiogenic blood vessels.