20 results on '"Vikingsson, Line"'
Search Results
2. Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action
- Author
-
Fernández, Juan Manuel, Oberti, Tamara Gisela, Vikingsson, Line, Gómez Ribelles, José Luis, and Cortizo, Ana María
- Published
- 2016
- Full Text
- View/download PDF
3. Local deformation in a hydrogel induced by an external magnetic field
- Author
-
Vikingsson, Line, Vinals-Guitart, Alvaro, Valera-Martínez, Alfonso, Riera, Jaime, Vidaurre, Ana, Gallego Ferrer, Gloria, and Gómez Ribelles, Jose Luis
- Published
- 2016
- Full Text
- View/download PDF
4. Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations
- Author
-
Vikingsson, Line, Sancho-Tello, María, Ruiz-Saurí, Amparo, Díaz, Santos Martínez, Gómez-Tejedor, José A., Ferrer, Gloria Gallego, Carda, Carmen, Monllau, Joan C., and Gómez Ribelles, José L.
- Published
- 2016
- Full Text
- View/download PDF
5. In vitro mechanical fatigue behavior of poly-epsilon-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel
- Author
-
Panadero, Juan Alberto, Vikingsson, Line, Gómez Ribelles, José Luís, Lanceros-Mendez, S., and Sencadas, V.
- Subjects
Scaffolds ,MAQUINAS Y MOTORES TERMICOS ,Mechanical properties ,Microstructure ,Fatigue ,Porous - Abstract
[EN] Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles., Contract grant sponsor: FCT; contract grant number: SFRH/BD/64586/2009 and SFRH/BPD/63148/2009 MINECO, contract grant MAT2013-46467-C4-1-R
- Published
- 2015
6. Strategies for the development of three dimensional scaffolds from piezoelectric poly(vinylidene fluoride)
- Author
-
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Economía y Competitividad, Fundação para a Ciência e a Tecnologia, Portugal, European Regional Development Fund, Correia , Daniela, Ribeiro, Clarisse, Sencadas, V., Vikingsson, Line, Gasch, M. Oliver, Gómez Ribelles, José Luís, Botelho, G., Lanceros-Mendez, Senentxu, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Economía y Competitividad, Fundação para a Ciência e a Tecnologia, Portugal, European Regional Development Fund, Correia , Daniela, Ribeiro, Clarisse, Sencadas, V., Vikingsson, Line, Gasch, M. Oliver, Gómez Ribelles, José Luís, Botelho, G., and Lanceros-Mendez, Senentxu
- Abstract
Cell supports based on electroactive materials, that generate electrical signal variations as a response to mechanical deformations and vice-versa, are gaining increasing attention for tissue engineering applications. In particular, poly(vinylidene fluoride), PVDF, has been proven to be suitable for these applications in the form of films and two-dimensional membranes. In this work, several strategies have been implemented in order to develop PVDF three-dimensional scaffolds. Three processing methods, including solvent casting with particulate leaching and three-dimensional nylon, and freeze extraction with poly(vinyl alcohol) templates are presented in order to obtain three-dimensional scaffolds with different architectures and interconnected porosity. Further, it is shown that the scaffolds are in the electroactive beta-phase and show a crystallinity degree of similar to 45%. Finally, quasi-static mechanical measurements showed that an increase of the porous size within the scaffold leads to a tensile strengths and the Young's modulus decrease, allowing tuning scaffold properties for specific tissues.
- Published
- 2016
7. Biodegradable polyester networks including hydrophilic groups favor BMSCs differentiation and can be eroded by macrophage action
- Author
-
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Ministerio de Educación, Instituto de Salud Carlos III, European Commission, Ministerio de Ciencia, Tecnología e Innovación Productiva, Argentina, Fernández, Juan Manuel, Gisela Oberti, Tamara, Vikingsson, Line, Gómez Ribelles, José Luís, Cortizo, Ana, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Ministerio de Educación, Instituto de Salud Carlos III, European Commission, Ministerio de Ciencia, Tecnología e Innovación Productiva, Argentina, Fernández, Juan Manuel, Gisela Oberti, Tamara, Vikingsson, Line, Gómez Ribelles, José Luís, and Cortizo, Ana
- Abstract
[EN] The aim of this study is to show that introducing a small fraction of hydrophilic groups into a hydrophobic polyester favor the macrophage activity by accelerating the degradation action in aqueous media. It is also seen that differentiation of MSCs cultured in monolayer towards bone in specific differentiation media is favored in these materials with respect to the corresponding pristine polyesters. Polymer networks based in polycarpolactone or poly(L-lactide) and containing a small fraction of poly(-hydroxyethyl acrylate) have been synthesized. Degradation kinetics in vitro was monitored by mass loss and swelling capacity of the polymer network in good solvents, the later as representative of chain cleavage. Hydrolytic and enzymatic degradation is accelerated by the inclusion of poly(hydroxyethyl acrylate) blocks in the network. Macrophages were cultured on the surface of the network films, showing its capacity to erode the material surface but also to accelerate bulk degradation. Bone marrow mesenchymal stem cells were cultured in monolayer on the membranes in osteogenic media, showing an increase of specific markers expression in comparison to pristine polyesters.
- Published
- 2016
8. Local deformation in a hydrogel induced by an external magnetic field
- Author
-
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny, Ministerio de Economía y Competitividad, European Regional Development Fund, Universitat Politècnica de València, Instituto de Salud Carlos III, Vikingsson, Line, Vinals Guitart, Álvaro, Valera Martínez, Alfonso, Riera Guasp, Jaime, Vidaurre Garayo, Ana Jesús, Gallego Ferrer, Gloria, Gómez Ribelles, José Luís, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny, Ministerio de Economía y Competitividad, European Regional Development Fund, Universitat Politècnica de València, Instituto de Salud Carlos III, Vikingsson, Line, Vinals Guitart, Álvaro, Valera Martínez, Alfonso, Riera Guasp, Jaime, Vidaurre Garayo, Ana Jesús, Gallego Ferrer, Gloria, and Gómez Ribelles, José Luís
- Abstract
The aim of this study is to prove the feasibility of a system able to apply local mechanical loading on cells seeded in a hydrogel for tissue engineering applications. This experimental study is based on a previously developed artificial cartilage model with different concentrations of poly(vinyl alcohol) (PVA) that simulates the cartilage extracellular matrix (ECM). Poly(l-lactic acid) (PLLA) microspheres with dispersed magnetic nanoparticles (MNPs) were produced with an emulsion method. These microspheres were embedded in aqueous PVA solutions with varying concentration to resemble increased viscosity of growing tissue during regeneration. The ability to induce a local deformation in the ECM was assessed by applying a steady or an oscillatory magnetic field gradient to different PVA solutions containing the magnetic microparticles, similarly as in ferrogels. PLLA microparticle motion was recorded, and the images were analyzed. Besides, PVA gels and PLLA microparticles were introduced into the pores of a polycaprolactone scaffold, and the microparticle distribution and the mechanical properties of the construct were evaluated. The results of this experimental model show that the dispersion of PLLA microparticles containing MNPs, together with cells in a supporting gel, will allow applying local mechanical stimuli to cells during tissue regeneration. This local stimulation can have a positive effect on the differentiation of seeded cells and improve tissue regeneration.
- Published
- 2016
9. Prediction of the in vivo mechanical behavior of biointegrable acrylic macroporous scaffolds
- Author
-
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Vikingsson, Line, Antolinos Turpín, Carmen María, Gómez-Tejedor, José Antonio, Gallego-Ferrer, Gloria, Gómez Ribelles, José Luís, Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials, Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Vikingsson, Line, Antolinos Turpín, Carmen María, Gómez-Tejedor, José Antonio, Gallego-Ferrer, Gloria, and Gómez Ribelles, José Luís
- Abstract
[EN] This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.
- Published
- 2016
10. In vitro mechanical fatigue behavior of poly-epsilon-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel
- Author
-
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Ministerio de Economía, Industria y Competitividad, Panadero, Juan Alberto, Vikingsson, Line, Gómez Ribelles, José Luís, Lanceros-Mendez, S., Sencadas, V., Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Ministerio de Economía, Industria y Competitividad, Panadero, Juan Alberto, Vikingsson, Line, Gómez Ribelles, José Luís, Lanceros-Mendez, S., and Sencadas, V.
- Abstract
[EN] Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
- Published
- 2015
11. Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations
- Author
-
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Ministerio de Economía y Competitividad, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Vikingsson, Line Karina Alva, Sancho-Tello Valls, Maria, Ruiz Sauri, Amparo, Martínez Díaz, Santos, Gómez-Tejedor, José Antonio, Gallego Ferrer, Gloria, Carda, Carmen, Monllau Garcia, Joan Carles, Gómez Ribelles, José Luís, Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Ministerio de Economía y Competitividad, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Vikingsson, Line Karina Alva, Sancho-Tello Valls, Maria, Ruiz Sauri, Amparo, Martínez Díaz, Santos, Gómez-Tejedor, José Antonio, Gallego Ferrer, Gloria, Carda, Carmen, Monllau Garcia, Joan Carles, and Gómez Ribelles, José Luís
- Abstract
Purpose: Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. Methods: The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral condyle of the knee joint of the sheep and histologic and mechanical evaluation was done 4.5 months later. The first group consisted of a biodegradable polycaprolactone (PCL) scaffold with double porosity. The second test group consisted of a PCL scaffold attached to a poly(L-lactic acid) (PLLA) pin anchored to the subchondral bone. Results: For both groups most of the defects (75%) showed an articular surface that was completely or almost completely repaired with a neotissue. Nevertheless, the surface had a rougher appearance than controls and the repair tissue was immature. In the trials with solely scaffold implantation, severe subchondral bone alterations were seen with many large nodular formations. These alterations were ameliorated when implanting the scaffold with a subchondral bone anchoring pin. Discussions: The results show that tissue repair is improved by implanting a PCL scaffold compared to solely microfracture surgery, and most importantly, that subchondral bone alterations, normally seen after microfracture surgery, were partially prevented when implanting the PCL scaffold with a fixation system to the subchondral bone.
- Published
- 2015
12. An experimental model to mimic the mechanical behavior of a scaffold in a cartilage defect
- Author
-
Gallego Ferrer, Gloria, Gómez Ribelles, José Luís, Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia, Vikingsson, Line Karina Alva, Gallego Ferrer, Gloria, Gómez Ribelles, José Luís, Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia, and Vikingsson, Line Karina Alva
- Abstract
[EN] Abstract The main purpose of this thesis is the design and characterization of an experimental articular cartilage model. The in vitro model is composed of a macro and micro- porous Polycaprolactone scaffold with a Poly(Vinyl Alcohol) filling. The scaffold/hydrogel construct has been subjected to repeating number of freezing and thawing cycles in order to crosslink the hydrogel inside the scaffold's pores. The Poly(Vinyl Alcohol) resembles the growing cartilaginous tissue inside the scaffolds pores, as it gets denser and stiffer for each cycle of freezing and thawing. The in vitro model allows studying a variety of characteristics of the scaffold and hydrogel, revealing interesting features. The importance of water flow on the mechanical properties is studied, so as the influence of micro-porosity. It can be seen that the mechanical properties of the porous scaffolds are influenced in distinct ways by the hydrogel density and micro-porosity of the scaffold. The permeability of the scaffolds is studied and is seen independent of crosslinking density of the hydrogel inside the porous scaffolds. The experimental cartilage model has also been applied on a macro porous acrylic scaffold. The results show that the water has different effect on the mechanical properties, for macro, or macro and micro-porous scaffolds. The in vitro cartilage model has elastic modulus, aggregate modulus and permeability values in the same order as human articular cartilage. The model is useful to predict the mechanical behavior of porous scaffolds in vivo. A scaffold implant device for animal studies has been designed based on a previous patent of the research group, and implanted in two different in vivo trials in sheep. The results show that the fixation and anchoring to the subchondral bone improve the tissue repair and diminish alterations in the subchondral bone. ¿, [ES] Resumen El objetivo principal de esta tesis doctoral es el diseño y caracterización de un modelo de cartílago articular experimental. El modelo in vitro se compone de un scaffold micro- y macroporoso de Policaprolactona con un relleno de Poli(Vinil Alcohol). El constructo scaffold/hidrogel ha sido sometido a ciclos consecutivos de congelación y descongelación con objeto de entrecruzar el hidrogel dentro de los poros del scaffold. El Poli(Vinil Alcohol) mimetiza al tejido de cartílago que se regenerará en los poros, ya que en cada ciclo de congelación y descongelación se vuelve más denso y duro. El modelo in vitro permite estudiar una gran variedad de características del scaffold e hidrogel, revelando fenómenos interesantes para la ingeniería tisular. Se ha estudiado la importancia del flujo de agua a través del scaffold en las propiedades mecánicas, así como la influencia de la microporosidad. Se ha podido constatar que la densidad del hidrogel y la microporosidad influyen de distinta forma en las propiedades mecánicas de los scaffolds porosos. Se ha estudiado la permeabilidad de los scaffolds, que ha resultado ser independiente de la densidad de entrecruzamiento del hidrogel dentro de sus poros. El modelo experimental de cartílago se ha aplicado también a un scaffold macroporoso acrílico. Los resultados muestran que el agua tiene un efecto distinto en las propiedades mecánicas de los scaffolds macroporosos y en los micro- macroporosos. El modelo de cartílago in vitro tiene valores del modulo elástico, módulo agregado y permeabilidad que son del mismo orden de magnitud que los del cartílago articular humano. El modelo permite predecir el comportamiento mecánico in vivo de scaffolds porosos. Se ha diseñado un dispositivo de implante de scaffold para experimentos en animales basado en una patente del grupo de investigación, que ha sido implantado en dos ensayos in vivo diferentes en ovejas. Los resultados muestran que la fijación y anclaje al hueso subcondral tie, [CA] Resum L'objectiu principal d'aquesta tesi doctoral és el disseny i caracterització d'un model de cartílag articular experimental. El model in vitro es compon d'un scaffold micro- i macroporós de Policaprolactona amb un farciment de Poli(Vinil Alcohol). El constructe scaffold/hidrogel ha estat sotmès a cicles consecutius de congelació i descongelació amb l'objectiu d'entrecreuar l'hidrogel dins del porus del scaffold. El Poli(Vinil Alcohol) mimetitza al teixit de cartílag que es regenerarà en el porus, ja que en cada cicle de congelació i descongelació es torna més dens i dur. El model in vitro permet estudiar una gran varietat de característiques del scaffold i hidrogel, posant de manifest fenòmens interessants per a l'enginyeria tissular. S'ha estudiat la importància del flux d'aigua a través del scaffold en les propietats mecàniques, així com la influència de la microporositat. S'ha pogut constatar que la densitat de l'hidrogel i la microporositat influeixen de distinta manera en les propietats mecàniques dels scaffolds porosos. S'ha estudiat la permeabilitat dels scaffolds, que ha resultat ser independent de la densitat d'entrecreuament de l'hidrogel dins dels seus porus. El model experimental de cartílag s'ha aplicat també a un scaffold macroporós acrílic. Els resultats mostren que l'aigua té un efecte distint en les propietats mecàniques dels scaffolds macroporosos i en els micro- macroporosos. El model de cartílag in vitro té valors del mòdul elàstic, mòdul agregat i permeabilitat que són del mateix ordre de magnitud que els del cartílag articular humà. El model permet predir el comportament mecànic in vivo de scaffolds porosos. S'ha dissenyat un dispositiu d'implant de scaffold per a experiments en animals basat en una patent del grup d'investigació, que ha segut implantat en dos assaigs in vivo diferents en ovelles. Els resultats mostren que la fixació i ancoratge a l'os subcondral té un gran paper en la reparació del teixit.
- Published
- 2015
13. An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage
- Author
-
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Ministerio de Economía y Competitividad, Instituto de Salud Carlos III, European Regional Development Fund, Ministerio de Ciencia e Innovación, Vikingsson, Line Karina Alva, Gómez-Tejedor, José Antonio, Gallego Ferrer, Gloria, Gómez Ribelles, José Luís, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Ministerio de Economía y Competitividad, Instituto de Salud Carlos III, European Regional Development Fund, Ministerio de Ciencia e Innovación, Vikingsson, Line Karina Alva, Gómez-Tejedor, José Antonio, Gallego Ferrer, Gloria, and Gómez Ribelles, José Luís
- Abstract
The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffold's pores.
- Published
- 2015
14. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering
- Author
-
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Economía y Competitividad, Ministerio de Ciencia e Innovación, European Regional Development Fund, Instituto de Salud Carlos III, Vikingsson, Line Karina Alva, Claessens, B., Gómez Tejedor, José Antonio, Gallego-Ferrer, Gloria, Gómez Ribelles, José Luís, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Economía y Competitividad, Ministerio de Ciencia e Innovación, European Regional Development Fund, Instituto de Salud Carlos III, Vikingsson, Line Karina Alva, Claessens, B., Gómez Tejedor, José Antonio, Gallego-Ferrer, Gloria, and Gómez Ribelles, José Luís
- Abstract
In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/ hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold's pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior.
- Published
- 2015
15. Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations
- Author
-
Vikingsson, Line, primary, Sancho-Tello, María, additional, Ruiz-Saurí, Amparo, additional, Díaz, Santos Martínez, additional, Gómez-Tejedor, José A., additional, Ferrer, Gloria Gallego, additional, Carda, Carmen, additional, Monllau, Joan C., additional, and Ribelles, José L. Gómez, additional
- Published
- 2015
- Full Text
- View/download PDF
16. An in vitro experimental model to predict the mechanical behaviour of macroporous scaffolds implanted in articular cartilage
- Author
-
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Vikingsson, Line Karina Alva, Gallego Ferrer, Gloria, Gómez-Tejedor, José Antonio, Gómez Ribelles, José Luís, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Vikingsson, Line Karina Alva, Gallego Ferrer, Gloria, Gómez-Tejedor, José Antonio, and Gómez Ribelles, José Luís
- Abstract
A model is proposed to assess mechanical behaviour of tissue engineering scaffolds and predict their performance in vivo during tissue regeneration. To simulate the growth of tissue inside the pores of the scaffold, the scaffold is swollen with a Poly (Vinyl alcohol) solution and subjected to repeated freezing and thawing cycles. In this way the Poly (Vinyl alcohol) becomes a gel whose stiffness increases with the number of freezing and thawing cycles. Mechanical properties of the construct immersed in water are shown to be determined, in large extent, by the water mobility constraints imposed by the gel filling the pores. This is similar to the way that water mobility determines mechanical properties of highly hydrated tissues, such as articular cartilage. As a consequence, the apparent elastic modulus of the scaffold in compression tests is much higher than those of the empty scaffold or the gel. Thus this experimental model allows assessing fatigue behaviour of the scaffolds under long-term dynamic loading in a realistic way, without recourse to animal experimentation.
- Published
- 2014
17. Grid polymeric scaffolds with polypeptide gel filling as patches for infarcted tissue regeneration
- Author
-
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, European Commission, Ministerio de Ciencia e Innovación, Vallés Lluch, Ana, Arnal Pastor, María Pilar, Martínez-Ramos, Cristina, Vilariño, Guillermo, Vikingsson, Line, Monleón Pradas, Manuel, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, European Commission, Ministerio de Ciencia e Innovación, Vallés Lluch, Ana, Arnal Pastor, María Pilar, Martínez-Ramos, Cristina, Vilariño, Guillermo, Vikingsson, Line, and Monleón Pradas, Manuel
- Abstract
© 2013 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works., [EN] Scaffolds of poly(ethyl acrylate) (PEA) with interconnected cylindrical orthogonal pores filled with a self-assembling peptide (SAP) gel are here proposed as patches for infarcted tissue regeneration. These combined systems aim to support cell therapy and meet further requirements posed by the application: the three-dimensional architecture of the elastomeric scaffold is expected to lodge the cells of interest in the damaged zone avoiding their death or migration, and at the same time conduct cell behavior and give mechanical support if necessary; the ECM-like polypeptide gel provides a cell-friendly aqueous microenvironment, facilitates diffusion of nutrients and cell wastes and is expected to improve the distribution and viability of the seeded cells within the pores and stimulate angiogenesis.
- Published
- 2013
18. Fatigue prediction in fibrin poly-epsilon-caprolactone macroporous scaffolds
- Author
-
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, European Regional Development Fund, Panadero, Juan Alberto, Vikingsson, Line Karina Alva, Gómez Ribelles, José Luís, Sencadas, Vitor Joao Gomes Da Silva, Lanceros-Mendez, Senentxu, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, European Regional Development Fund, Panadero, Juan Alberto, Vikingsson, Line Karina Alva, Gómez Ribelles, José Luís, Sencadas, Vitor Joao Gomes Da Silva, and Lanceros-Mendez, Senentxu
- Abstract
Tissue engineering applications rely on scaffolds that during its service life, either for in-vivo or in vitro applications, are under loading. The variation of the mechanical condition of the scaffold is strongly relevant for cell culture and has scarcely been addressed. The fatigue life cycle of poly-epsilon-caprolactone, PCL, scaffolds with and without fibrin as filler of the pore structure were characterized both dry and immersed in liquid water. It is observed that the there is a strong increase from 100 to 500 in the number of loading cycles before collapse in the samples tested in immersed conditions due to the more uniform stress distributions within the samples, the fibrin loading playing a minor role in the mechanical performance of the scaffolds.
- Published
- 2013
19. Combining self-assembling peptide gels with three-dimensional elastomer scaffolds
- Author
-
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, European Commission, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Vallés Lluch, Ana, Arnal Pastor, María Pilar, Martínez Ramos, Cristina, Vilariño Feltrer, Guillermo, Vikingsson, Line, Castells Sala, Carla, Semino, Carlos Eduardo, Monleón Pradas, Manuel, Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, European Commission, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Vallés Lluch, Ana, Arnal Pastor, María Pilar, Martínez Ramos, Cristina, Vilariño Feltrer, Guillermo, Vikingsson, Line, Castells Sala, Carla, Semino, Carlos Eduardo, and Monleón Pradas, Manuel
- Abstract
[EN] Some of the problems raised by the combination of porous scaffolds and self-assembling peptide (SAP) gels as constructs for tissue engineering applications are addressed for the first time. Scaffolds of poly(- ethyl acrylate) and the SAP gel RAD16-I were employed. The in situ gelation of the SAP gel inside the pores of the scaffolds was studied. The scaffold-cum-gel constructs were characterized morphologically, physicochemically and mechanically. The possibility of incorporating an active molecule (bovine serum albumin, taken here as a model molecule for others) in the gel within the scaffold’s pores was assessed, and the kinetics of its release in phosphate-buffered saline was followed. Cell seeding and colonization of these constructs were preliminarily studied with L929 fibroblasts and subsequently checked with sheep adipose-tissue-derived stem cells intended for further preclinical studies. Static (conventional) and dynamically assisted seedings were compared for bare scaffolds and the scaffold-cum-gel constructs. The SAP gel inside the pores of the scaffold significantly improved the uniformity and density of cell colonization of the three-dimensional (3-D) structure. These constructs could be of use in different advanced tissue engineering applications, where, apart from a cell-friendly extracellular matrix -like aqueous environment, a larger-scale 3-D structure able to keep the cells in a specific place, give mechanical support and/or conduct spatially the tissue growth could be required.
- Published
- 2013
20. An experimental model to mimic the mechanical behavior of a scaffold in a cartilage defect
- Author
-
Vikingsson, Line, primary
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.