Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Codina, Ramon, Villota Cadena, Ángel Patricio, Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental, Codina, Ramon, and Villota Cadena, Ángel Patricio
The objective of the doctoral thesis is to perform the numerical approximation of the transient convection-diffusion-reaction (CDR) vector equation in 2D with high order finite elements, quadratic, cubic and fourth order, using stabilized finite element methods of the type VMS (Variational Multi-Scale) such as ASGS and OSS, testeds in recent years to solve the transient vector equation of CDR when there is the phenomenon of dominant convection or reaction and aggravated by the nonlinearity of either the convective term or the term reaction. The standard Galerkin finite element method applied to the CDR transient scalar equation presents instabilities in the solution when the convective and reaction terms are dominant versus the diffusive term. We solve this difficulty by two finite element methods based on subscales, these are the known methods called ASGS (Algebraic Sub-Grid Scale) and OSS (Orthogonal Subscale Stabilization), which basically consist of decomposing the unknown continuous scalar variable into two components, one than is resolved in the finite element space and the other that cannot be captured by the finite element mesh and therefore belongs to another function space that we call subscale space. It is precisely the choice of the subscale space that imposes the difference between the ASGS and OSS methods. We will experiment with the stabilization parameter suggested in the literature for linear elements, making an extension of the same parameter to take into account the interpolation order to deal with high order finite elements. Likewise, in the calculation of the subscale with fourth order triangular elements for the OSS method, we have proposed the modification of the standard triangular element in order to have a closed integration rule with the integration points in the nodes. As for temporal and spatial discretization, we first discretize in time, and then for each instant of time we make the spatial approximation and stabilization including the, El objetivo de la tesis doctoral es realizar la aproximación numérica de la ecuación vectorial transitoria de convección-difusión-reacción (CDR) en 2D con elementos finitos de alto orden, cuadráticos, cúbicos y de cuarto orden, mediante métodos de elementos finitos estabilizados del tipo VMS (Variational Multi-Scale) como el ASGS y OSS, probados en los últimos años para resolver la ecuación vectorial transitoria de CDR cuando existe el fenómeno de convección o reacción dominantes y agravado por la no linealidad sea del término convectivo o del término de reacción. El método estándar de elementos finitos de Galerkin aplicado a la ecuación escalar transitoria de CDR presenta inestabilidades en la solución cuando los términos convectivo y de reacción son dominantes frente al término difusivo. Esta dificultad la resolvemos por dos métodos de elementos finitos basados en subescalas, estos son los conocidos métodos llamados ASGS (Algebraic Sub-Grid Scale) y OSS (Orthogonal Subscale Stabilization), que fundamentalmente consisten en descomponer la variable escalar continua desconocida en dos componentes, una que es resuelta en el espacio de los elementos finitos y otra que no puede ser capturada por la malla de elementos finitos y por lo tanto pertenece a otro espacio de funciones que lo llamamos espacio de subescalas. Precisamente, la elección del espacio de subescalas es el que impone la diferencia entre los métodos ASGS y OSS. Experimentaremos con el parámetro de estabilización sugerido en la literatura para elementos lineales, realizando una ampliación del mismo parámetro para tomar en cuenta el orden de interpolación para tratar con elementos finitos de alto orden. Igualmente, en el cálculo de la subescala con elementos triangulares de cuarto orden para el método OSS hemos propuesto la modificación del elemento triangular estándar con el fin de tener una regla de integración cerrada con los puntos de integración en los nodos. En cuanto a la discretización temporal y es, Postprint (published version)