Frachet, M, Benhabib, S, Vinograd, I, Wu, S -F, Vignolle, B, Mayaffre, H, Krämer, S, Kurosawa, T, Momono, N, Oda, M, Chang, J, Proust, C, Julien, M -H, LeBoeuf, D, Laboratoire national des champs magnétiques intenses - Grenoble (LNCMI-G ), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Physics, Hokkaido University [Sapporo, Japan], Muroran Institute of Technology, Universität Zürich [Zürich] = University of Zurich (UZH), We thank A. Böhmer, I. Paul, and D. Campbell for fruitful discussions, as well as D. Destraz and O. Ivashko for their assistance with sample preparation. Part of this work was performed at the LNCMI, a member of the European Magnetic Field Laboratory (EMFL). Work at the LNCMI was supported by the Laboratoire d'Excellence LANEF (ANR-10-LABX-51-01), French Agence Nationale de la Recherche (ANR) Grant No. ANR-19-CE30-0019-01 (Neptun) and EUR Grant NanoX n∘ANR-17-EURE-0009. Work in Zürich was supported by the Swiss National Science Foundation., ANR-19-CE30-0019,neptun,Nouvelles approches du problème des supraconducteurs à haute température(2019), ANR-17-EURE-0009,NanoX,Science et Ingénierie à l'Echelle Nano(2017), University of Zurich, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
High-$T_{\rm{c}}$ cuprate superconductors host spin, charge and lattice instabilities. In particular, in the antiferromagnetic glass phase, over a large doping range, lanthanum based cuprates display a glass-like spin freezing with antiferromagnetic correlations. Previously, sound velocity anomalies in La$_{2-x}$Sr$_{x}$CuO$_4$ (LSCO) for hole doping $p\geq 0.145$ were reported and interpreted as arising from a coupling of the lattice to the magnetic glass [Frachet, Vinograd et al., Nat. Phys. 16, 1064-1068 (2020)]. Here we report both sound velocity and attenuation in LSCO $p=0.12$, i.e. at a doping level for which the spin freezing temperature is the highest. Using high magnetic fields and comparing with nuclear magnetic resonance (NMR) measurements, we confirm that the anomalies in the low temperature ultrasound properties of LSCO are produced by a coupling between the lattice and the spin glass. Moreover, we show that both sound velocity and attenuation can be simultaneously accounted for by a simple phenomenological model originally developed for canonical spin glasses. Our results point towards a strong competition between superconductivity and spin freezing, tuned by the magnetic field. A comparison of different acoustic modes suggests that the slow spin fluctuations have a nematic character., Comment: 12 pages, 8 figures