19 results on '"Voroshylova IV"'
Search Results
2. A computational study of the ternary mixtures of NaPF 6 -EC and choline glycine ionic liquid.
- Author
-
Fileti EE, Voroshylova IV, D S Cordeiro MN, and Malaspina T
- Abstract
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF
6 , ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF6 -EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility. Our findings demonstrate that the NaPF6 -EC-ChGly mixture exhibits a complex network of electrostatic interactions and hydrogen bonding, with the glycine anion significantly influencing the liquid structure. In mixtures with small additions of ChGly, we observed an optimal balance of diffusion and ionic mobility. These results highlight the potential of ChGly as a green additive to conventional electrolytes, paving the way for more sustainable and high-performance energy storage devices.- Published
- 2025
- Full Text
- View/download PDF
3. Magnetic Ionic Liquids: Current Achievements and Future Perspectives with a Focus on Computational Approaches.
- Author
-
Figueiredo NM, Voroshylova IV, Ferreira ESC, Marques JMC, and Cordeiro MNDS
- Abstract
Magnetic ionic liquids (MILs) stand out as a remarkable subclass of ionic liquids (ILs), combining the desirable features of traditional ILs with the unique ability to respond to external magnetic fields. The incorporation of paramagnetic species into their structures endows them with additional attractive features, including thermochromic behavior and luminescence. These exceptional properties position MILs as highly promising materials for diverse applications, such as gas capture, DNA extractions, and sensing technologies. The present Review synthesizes key experimental findings, offering insights into the structural, thermal, magnetic, and optical properties across various MIL families. Special emphasis is placed on unraveling the influence of different paramagnetic species on MILs' behavior and functionality. Additionally, the Review highlights recent advancements in computational approaches applied to MIL research. By leveraging molecular dynamics (MD) simulations and density functional theory (DFT) calculations, these computational techniques have provided invaluable insights into the underlying mechanisms governing MILs' behavior, facilitating accurate property predictions. In conclusion, this Review provides a comprehensive overview of the current state of research on MILs, showcasing their special properties and potential applications while highlighting the indispensable role of computational methods in unraveling the complexities of these intriguing materials. The Review concludes with a forward-looking perspective on the future directions of research in the field of magnetic ionic liquids.
- Published
- 2024
- Full Text
- View/download PDF
4. Predicting the Surface Tension of Deep Eutectic Solvents: A Step Forward in the Use of Greener Solvents.
- Author
-
Halder AK, Haghbakhsh R, Voroshylova IV, Duarte ARC, and Cordeiro MNDS
- Subjects
- Reproducibility of Results, Solvents chemistry, Surface Tension, Deep Eutectic Solvents, Quantitative Structure-Activity Relationship
- Abstract
Deep eutectic solvents (DES) are an important class of green solvents that have been developed as an alternative to toxic solvents. However, the large-scale industrial application of DESs requires fine-tuning their physicochemical properties. Among others, surface tension is one of such properties that have to be considered while designing novel DESs. In this work, we present the results of a detailed evaluation of Quantitative Structure-Property Relationships (QSPR) modeling efforts designed to predict the surface tension of DESs, following the Organization for Economic Co-operation and Development (OECD) guidelines. The data set used comprises a large number of structurally diverse binary DESs and the models were built systematically through rigorous validation methods, including 'mixtures-out'- and 'compounds-out'-based data splitting. The most predictive individual QSPR model found is shown to be statistically robust, besides providing valuable information about the structural and physicochemical features responsible for the surface tension of DESs. Furthermore, the intelligent consensus prediction strategy applied to multiple predictive models led to consensus models with similar statistical robustness to the individual QSPR model. The benefits of the present work stand out also from its reproducibility since it relies on fully specified computational procedures and on publicly available tools. Finally, our results not only guide the future design and screening of novel DESs with a desirable surface tension but also lays out strategies for efficiently setting up silico-based models for binary mixtures.
- Published
- 2022
- Full Text
- View/download PDF
5. Computational Modelling and Sustainable Synthesis of a Highly Selective Electrochemical MIP-Based Sensor for Citalopram Detection.
- Author
-
Rebelo P, Pacheco JG, Voroshylova IV, Seguro I, Cordeiro MNDS, and Delerue-Matos C
- Subjects
- Citalopram, Computer Simulation, Electrochemical Techniques methods, Molecular Imprinting methods, Molecularly Imprinted Polymers
- Abstract
A novel molecularly imprinted polymer (MIP) has been developed based on a simple and sustainable strategy for the selective determination of citalopram (CTL) using screen-printed carbon electrodes (SPCEs). The MIP layer was prepared by electrochemical in situ polymerization of the 3-amino-4 hydroxybenzoic acid (AHBA) functional monomer and CTL as a template molecule. To simulate the polymerization mixture and predict the most suitable ratio between the template and functional monomer, computational studies, namely molecular dynamics (MD) simulations, were carried out. During the experimental preparation process, essential parameters controlling the performance of the MIP sensor, including CTL:AHBA concentration, number of polymerization cycles, and square wave voltammetry (SWV) frequency were investigated and optimized. The electrochemical characteristics of the prepared MIP sensor were evaluated by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Based on the optimal conditions, a linear electrochemical response of the sensor was obtained by SWV measurements from 0.1 to 1.25 µmol L
-1 with a limit of detection (LOD) of 0.162 µmol L-1 (S/N = 3). Moreover, the MIP sensor revealed excellent CTL selectivity against very close analogues, as well as high imprinting factor of 22. Its applicability in spiked river water samples demonstrated its potential for adequate monitoring of CTL. This sensor offers a facile strategy to achieve portability while expressing a willingness to care for the environment.- Published
- 2022
- Full Text
- View/download PDF
6. Ammonium-, phosphonium- and sulfonium-based 2-cyanopyrrolidine ionic liquids for carbon dioxide fixation.
- Author
-
Chaban VV, Andreeva NA, and Voroshylova IV
- Abstract
The development of carbon dioxide (CO
2 ) scavengers is an acute problem nowadays because of the global warming problem. Many groups around the globe intensively develop new greenhouse gas scavengers. Room-temperature ionic liquids (RTILs) are seen as a proper starting point to synthesize more environmentally friendly and high-performance sorbents. Aprotic heterocyclic anions (AHA) represent excellent agents for carbon capture and storage technologies. In the present work, we investigate RTILs in which both the weakly coordinating cation and AHA bind CO2 . The ammonium-, phosphonium-, and sulfonium-based 2-cyanopyrrolidines were investigated using the state-of-the-art method to describe the thermochemistry of the CO2 fixation reactions. The infrared spectra and electronic and structural properties were simulated at the hybrid density functional level of theory to characterize the reactants and products of the chemisorption reactions. We conclude that the proposed CO2 capturing mechanism is thermodynamically allowed and discuss the difference between different families of RTILs. Quite unusually, the intramolecular electrostatic attraction plays an essential role in stabilizing the zwitterionic products of the CO2 chemisorption. The difference in chemisorption performance between the families of RTILs is linked to sterical hindrances and nucleophilicities of the α- and β-carbon atoms of the aprotic cations. Our results rationalize previous experimental CO2 sorption measurements (Brennecke et al. , 2021).- Published
- 2022
- Full Text
- View/download PDF
7. A simple electrochemical detection of atorvastatin based on disposable screen-printed carbon electrodes modified by molecularly imprinted polymer: Experiment and simulation.
- Author
-
Rebelo P, Pacheco JG, Voroshylova IV, Melo A, Cordeiro MNDS, and Delerue-Matos C
- Subjects
- Atorvastatin, Carbon, Electrochemical Techniques, Electrodes, Limit of Detection, Molecularly Imprinted Polymers, Molecular Imprinting
- Abstract
Atorvastatin (ATV) is a statin member consumed in high quantities worldwide. In response to that, the occurrence of ATV in environmental waters has become a reality, highlighting the need of rapid and sensitive analytical devices for its monitoring. In this work, the first electrochemical molecularly imprinted polymer (MIP) sensor for the detection of ATV in water samples is presented. Computational studies were conducted based on quantum mechanical (QM) calculations and molecular dynamics (MD) simulations for rational selection of a suitable functional monomer and to study in detail the template-monomer interaction, respectively. The sensor was prepared by electropolymerisation of the selected 4-aminobenzoic acid (ABA) monomer with ATV, acting as template, on screen printed carbon electrode (SPCE). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were applied to characterise the modified electrode surfaces. The quantitative measurements were carried out with differential pulse voltammetry (DPV) in 0.1 M phosphate buffer (pH = 7). After investigation and optimisation of important experimental parameters, a linear working range down to 0.05 μmol L
-1 was determined with a correlation coefficient of 0.9996 and a limit of detection (LOD) as low as 0.049 μmol L-1 (S/N = 3). High sensitivity and selectivity of the prepared sensor were demonstrated with the ability to recognise ATV molecules over its closer structural analogues. Moreover, the sensor was quickly and successfully applied in spiked water samples, proving its potential for future on-site monitoring of ATV in environmental waters., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
8. Density of Deep Eutectic Solvents: The Path Forward Cheminformatics-Driven Reliable Predictions for Mixtures.
- Author
-
Halder AK, Haghbakhsh R, Voroshylova IV, Duarte ARC, and Cordeiro MNDS
- Abstract
Deep eutectic solvents (DES) are often regarded as greener sustainable alternative solvents and are currently employed in many industrial applications on a large scale. Bearing in mind the industrial importance of DES-and because the vast majority of DES has yet to be synthesized-the development of cheminformatic models and tools efficiently profiling their density becomes essential. In this work, after rigorous validation, quantitative structure-property relationship (QSPR) models were proposed for use in estimating the density of a wide variety of DES. These models were based on a modelling dataset previously employed for constructing thermodynamic models for the same endpoint. The best QSPR models were robust and sound, performing well on an external validation set (set up with recently reported experimental density data of DES). Furthermore, the results revealed structural features that could play crucial roles in ruling DES density. Then, intelligent consensus prediction was employed to develop a consensus model with improved predictive accuracy. All models were derived using publicly available tools to facilitate easy reproducibility of the proposed methodology. Future work may involve setting up reliable, interpretable cheminformatic models for other thermodynamic properties of DES and guiding the design of these solvents for applications.
- Published
- 2021
- Full Text
- View/download PDF
9. Molecular dynamic study of alcohol-based deep eutectic solvents.
- Author
-
Ferreira ESC, Voroshylova IV, Figueiredo NM, and Cordeiro MNDS
- Abstract
The applicability of deep eutectic solvents is determined by their physicochemical properties. In turn, the properties of eutectic mixtures are the result of the components' molar ratio and chemical composition. Owing to the relatively low viscosities displayed by alcohol-based deep eutectic solvents (DESs), their application in industry is more appealing. Modeling the composition-property relationships established in polyalcohol-based mixtures is crucial for both understanding and predicting their behavior. In this work, a physicochemical property-structure comparison study is made between four choline chloride polyalcohol-based DESs, namely, ethaline, propeline, propaneline, and glyceline. Physicochemical properties obtained from molecular dynamic simulations are compared to experimental data, whenever possible. The simulations cover the temperature range from 298.15 to 348.15 K. The simulated and literature experimental data are generally in good agreement for all the studied DESs. Structural properties, such as radial and spatial distribution functions, coordination numbers, hydrogen bond donor (HBD)-HBD aggregate formation, and hydrogen bonding are analyzed in detail. The higher prevalence of HBD:HBD and HBD:anion hydrogen bonds is likely to be the major reason for the relatively high density and viscosity of glyceline as well as for lower DES self-diffusions.
- Published
- 2021
- Full Text
- View/download PDF
10. Hysteresis in the MD Simulations of Differential Capacitance at the Ionic Liquid-Au Interface.
- Author
-
Voroshylova IV, Ers H, Docampo-Álvarez B, Pikma P, Ivaništšev VB, and Cordeiro MNDS
- Abstract
In this Letter, we report the first observation of the capacitance-potential hysteresis at the ionic liquid | electrode interface in atomistic molecular dynamics simulations. While modeling the differential capacitance dependence on the potential scan direction, we detected two long-living types of interfacial structure for the BMImPF
6 ionic liquid at specific charge densities of the gold Au(111) surface. These structures differ in how counterions overscreen the surface charge. The high barrier for the transition from one structure to another slows down the interfacial restructuring process and leads to the marked capacitance-potential hysteresis.- Published
- 2020
- Full Text
- View/download PDF
11. Influence of the anion on the properties of ionic liquid mixtures: a molecular dynamics study.
- Author
-
Voroshylova IV, Ferreira ESC, Malček M, Costa R, Pereira CM, and Cordeiro MNDS
- Abstract
Mixing of ionic liquids provides new opportunities for their tuning, enabling the applications of ionic liquid mixtures to expand. At the same time, the genesis of the fundamental properties of ionic liquid mixtures is still poorly understood. In this study we carried out a molecular dynamics simulation of binary mixtures of 1-buthyl-3-methylimidazolium hexafluorophosphate, 1-buthyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-buthyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate ([C4mim][PF6] + [C4mim][NTf2], [C4mim][PF6] + [C4mim][FAP], [C4mim][FAP] + [C4mim][NTf2]) in a wide concentration range at 303.15 K and complemented it with quantum mechanical calculations. Three pure ionic liquids underwent the same kind of analysis for comparison purposes. We found that the addition of the [FAP]--anion to a mixture enhances the segregation of non-polar domains and weakens the hydrogen-bond network. The H-bonds in the studied mixtures are rather weak, as follows from QTAIM analysis, with the rarest occurrence for the [FAP]--anion. The competition of two anions in the mixtures for the most acidic hydrogen of the 1-butyl-3-methylimidazolium cation is reported. In most of the cases, the smaller anion ([PF6]- or [NTf2]-) with stronger charge concentration displaces the bigger one ([NTf2]- or [FAP]-) from the preferred coordination site. The existing nano-segregation in some mixtures notably slows down ion diffusion. Our results show that the differences in anion size, shape and nature are the main reasons for nano-segregation and the non-ideal behavior of ionic liquid mixtures.
- Published
- 2018
- Full Text
- View/download PDF
12. On the thickness of the double layer in ionic liquids.
- Author
-
Ruzanov A, Lembinen M, Jakovits P, Srirama SN, Voroshylova IV, Cordeiro MNDS, Pereira CM, Rossmeisl J, and Ivaništšev VB
- Abstract
In this study, we examined the thickness of the electrical double layer (EDL) in ionic liquids using density functional theory (DFT) calculations and molecular dynamics (MD) simulations. We focused on BF4- anion adsorption from the 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) ionic liquid on the Au(111) surface. At both DFT and MD levels, we evaluated the capacitance-potential dependence for the Helmholtz model of the interface. Using MD simulations, we also explored a more realistic, multilayer EDL model accounting for the ion layering. Concurrent analysis of the DFT and MD results provides a ground for thinking whether the electrical double layer in ionic liquids is one- or multi-ionic-layer thick.
- Published
- 2018
- Full Text
- View/download PDF
13. New Force Field Model for Propylene Glycol: Insight to Local Structure and Dynamics.
- Author
-
Ferreira ESC, Voroshylova IV, Koverga VA, Pereira CM, and Cordeiro MNDS
- Abstract
In this work we developed a new force field model (FFM) for propylene glycol (PG) based on the OPLS all-atom potential. The OPLS potential was refined using quantum chemical calculations, taking into account the densities and self-diffusion coefficients. The validation of this new FFM was carried out based on a wide range of physicochemical properties, such as density, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. The molecular dynamics (MD) simulations were performed over a large range of temperatures (293.15-373.15 K). The comparison with other force field models, such as OPLS, CHARMM27, and GAFF, revealed a large improvement of the results, allowing a better agreement with experimental data. Specific structural properties (radial distribution functions, hydrogen bonding and spatial distribution functions) were then analyzed in order to support the adequacy of the proposed FFM. Pure propylene glycol forms a continuous phase, displaying no microstructures. It is shown that the developed FFM gives rise to suitable results not only for pure propylene glycol but also for mixtures by testing its behavior for a 50 mol % aqueous propylene glycol solution. Furthermore, it is demonstrated that the addition of water to the PG phase produces a homogeneous solution and that the hydration interactions prevail over the propylene glycol self-association interactions.
- Published
- 2017
- Full Text
- View/download PDF
14. Improved Force Field Model for the Deep Eutectic Solvent Ethaline: Reliable Physicochemical Properties.
- Author
-
Ferreira ESC, Voroshylova IV, Pereira CM, and D S Cordeiro MN
- Abstract
In this work, we combined various parameters found in the literature for the choline cation, chloride anion, and ethylene glycol to set up force field models (FFMs) for a eutectic mixture, namely, ethaline (1:2 choline chloride/ethylene glycol (ChCl:2EG)). The validation of these models was carried out on the basis of physical and chemical properties, such as the density, expansion coefficient, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. After the initial evaluation of the FFMs, a refinement was found necessary and accomplished by taking into account polarization effects in a mean-field manner. This was achieved by rescaling the electrostatic charges of the ions based on partial charges derived from ab initio molecular dynamics (MD) simulations of the bulk system. Classical all-atom MD simulations performed over a large range of temperatures (298.15-373.15 K) using the refined FFMs clearly showed improved results, allowing a better prediction of experimental properties. Specific structural properties (radial distribution functions and hydrogen bonding) were then analyzed in order to support the adequacy of the proposed refinement. The final selected FFM leads to excellent agreement between simulated and experimental data on dynamic and structural properties. Moreover, compared to the previously reported force field model (Perkins, S. L.; Painter, P.; Colina, C. M. Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2014, 59, 3652-3662), a 10% improvement in simulated transport properties, i.e., self-diffusion coefficients, was achieved. The isothermal compressibility, surface tension, and shear viscosity for ethaline are accessed in MD simulations for the first time.
- Published
- 2016
- Full Text
- View/download PDF
15. Interactions in the ionic liquid [EMIM][FAP]: a coupled experimental and computational analysis.
- Author
-
Voroshylova IV, Teixeira F, Costa R, Pereira CM, and Cordeiro MN
- Abstract
Gas-phase electronic and structural properties of the room temperature ionic liquid 1-ethyl-3-methylimidazolium tris(perfluoroethyl)trifluorophosphate ([EMIM][FAP]) were studied using density functional theory, and confirmed with results from infrared spectroscopy. A conformational analysis allowed the identification of several plausible conformers of the ion pairs. For the detected conformers, the infrared spectra were predicted and their thermodynamic properties were evaluated. The topology of the electronic density of the most stable conformers of [EMIM][FAP] ion pairs were characterised using the quantum theory of atoms in molecules. A number of possible hydrogen bonds between the cations and anions of the ionic liquid were identified. Excellent correspondence was found between the predicted spectra of gas-phase [EMIM][FAP] conformers and the experimental infrared spectrum, which in turn allowed a clear attribution of the vibration modes of [EMIM][FAP]. Finally, the contribution of the various conformers of both isomers of the [FAP](-) anion to the ionic liquid macro-properties is shown.
- Published
- 2016
- Full Text
- View/download PDF
16. Systematic refinement of Canongia Lopes-Pádua force field for pyrrolidinium-based ionic liquids.
- Author
-
Chaban VV and Voroshylova IV
- Abstract
Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. While Canongia Lopes-Pádua (CL&P) FF provides good to excellent thermodynamics and structure of pure room-temperature ionic liquids (RTILs), it suffers from drastically and systematically underestimated ionic motion. This occurs due to neglected partial electron transfer from the anion to the cation, resulting in unphysically small simulated self-diffusion and conductivity and high shear viscosities. We report a systematic refinement of the CL&P FF for six pyrrolidinium-based RTILs (1-N-butyl-1-methylpyrrolidinium dicyanamide, triflate, bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, tetrafluoroborate, chloride). The elaborated procedure accounts for specific cation-anion interactions in the liquid phase. Once these interactions are described effectively, experimentally determined transport properties can be reproduced with an acceptable accuracy. Together with the original CL&P parameters, our force field fosters computational investigation of ionic liquids. In addition, the reported results shed more light on the chemical nature of cation-anion binding in various families of RTILs.
- Published
- 2015
- Full Text
- View/download PDF
17. Atomistic force field for pyridinium-based ionic liquids: reliable transport properties.
- Author
-
Voroshylova IV and Chaban VV
- Subjects
- Anions chemistry, Cations chemistry, Models, Chemical, Static Electricity, Temperature, Thermodynamics, Ionic Liquids chemistry, Pyridinium Compounds chemistry
- Abstract
Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cation-anion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove that three parameters per interaction site (atom diameter, depth of potential well, point electrostatic charge) provide a sufficient basis to predict thermodynamics (heat of vaporization, density), structure (radial distributions), and transport (diffusion, viscosity, conductivity) of ILs at room conditions and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia Lopes-Pádua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids.
- Published
- 2014
- Full Text
- View/download PDF
18. Acetonitrile boosts conductivity of imidazolium ionic liquids.
- Author
-
Chaban VV, Voroshylova IV, Kalugin ON, and Prezhdo OV
- Abstract
We apply a new methodology in the force field generation (Phys. Chem. Chem. Phys.2011, 13, 7910) to study binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). Each RTIL is composed of tetrafluoroborate (BF(4)) anion and dialkylimidazolium (MMIM) cations. The first alkyl group of MIM is methyl, and the other group is ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Upon addition of ACN, the ionic conductivity of RTILs increases by more than 50 times. It significantly exceeds an impact of most known solvents. Unexpectedly, long-tailed imidazolium cations demonstrate the sharpest conductivity boost. This finding motivates us to revisit an application of RTIL/ACN binary systems as advanced electrolyte solutions. The conductivity correlates with a composition of ion aggregates simplifying its predictability. Addition of ACN exponentially increases diffusion and decreases viscosity of the RTIL/ACN mixtures. Large amounts of ACN stabilize ion pairs, although they ruin greater ion aggregates.
- Published
- 2012
- Full Text
- View/download PDF
19. A new force field model for the simulation of transport properties of imidazolium-based ionic liquids.
- Author
-
Chaban VV, Voroshylova IV, and Kalugin ON
- Abstract
A new, non-polarizable force field model (FFM) for imidazolium-based, room-temperature ionic liquids (RTILs), 1-ethyl-3-methyl-imidazolium tetrafluoroborate and 1-butyl-3-methyl-imidazolium tetrafluoroborate, has been developed. Modifying the FFM originally designed by Liu et al. (J. Phys. Chem. B, 2004, 108, 12978-12989), the electrostatic charges on interacting sites are refined according to partial charges calculated by explicit-ion density functional theory. The refined FFM reproduces experimental heats of vaporization, diffusion coefficients, ionic conductivities, and shear viscosities of RTILs, which is a significant improvement over the original model (Zh. Liu, Sh. Huang and W. Wang, J. Phys. Chem. B, 2004, 108, 12978-12989). The advantages of the proposed procedure include clarity, simplicity, and flexibility. Expanding the functionality of our FFM conveniently only requires modification of the electrostatic charges. Our FFM can be extended to other classes of RTILs as well as condensed matter systems in which the ionic interaction requires an account of polarization effects., (This journal is © the Owner Societies 2011)
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.