29 results on '"Vu, Thi Xuan"'
Search Results
2. Faster real root decision algorithm for symmetric polynomials
- Author
-
Labahn, George, Riener, Cordian, Din, Mohab Safey El, Schost, Éric, and Vu, Thi Xuan
- Subjects
Computer Science - Symbolic Computation ,Mathematics - Algebraic Geometry - Abstract
In this paper, we consider the problem of deciding the existence of real solutions to a system of polynomial equations having real coefficients, and which are invariant under the action of the symmetric group. We construct and analyze a Monte Carlo probabilistic algorithm which solves this problem, under some regularity assumptions on the input, by taking advantage of the symmetry invariance property. The complexity of our algorithm is polynomial in $d^s, {{n+d} \choose d}$, and ${{n} \choose {s+1}}$, where $n$ is the number of variables and $d$ is the maximal degree of $s$ input polynomials defining the real algebraic set under study. In particular, this complexity is polynomial in $n$ when $d$ and $s$ are fixed and is equal to $n^{O(1)}2^n$ when $d=n$.
- Published
- 2023
- Full Text
- View/download PDF
3. Computing critical points for algebraic systems defined by hyperoctahedral invariant polynomials
- Author
-
Vu, Thi Xuan
- Subjects
Computer Science - Symbolic Computation - Abstract
Let $\mathbb{K}$ be a field of characteristic zero and $\mathbb{K}[x_1, \dots, x_n]$ the corresponding multivariate polynomial ring. Given a sequence of $s$ polynomials $\mathbf{f} = (f_1, \dots, f_s)$ and a polynomial $\phi$, all in $\mathbb{K}[x_1, \dots, x_n]$ with $s
- Published
- 2022
4. On the complexity of invariant polynomials under the action of finite reflection groups
- Author
-
Vu, Thi Xuan
- Subjects
Computer Science - Symbolic Computation - Abstract
Let $\mathbb{K}[x_1, \dots, x_n]$ be a multivariate polynomial ring over a field $\mathbb{K}$. Let $(u_1, \dots, u_n)$ be a sequence of $n$ algebraically independent elements in $\mathbb{K}[x_1, \dots, x_n]$. Given a polynomial $f$ in $\mathbb{K}[u_1, \dots, u_n]$, a subring of $\mathbb{K}[x_1, \dots, x_n]$ generated by the $u_i$'s, we are interested infinding the unique polynomial $f_{\rm new}$ in $\mathbb{K}[e_1,\dots, e_n]$, where $e_1, \dots, e_n$ are new variables, such that $f_{\mathrm{new}}(u_1, \dots, u_n) = f(x_1, \dots, x_n)$. We provide an algorithm and analyze its arithmetic complexity to compute $f_{\mathrm{new}}$ knowing $f$ and $(u_1, \dots, u_n)$.
- Published
- 2022
5. Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix
- Author
-
Labahn, George, Neiger, Vincent, Vu, Thi Xuan, and Zhou, Wei
- Subjects
Computer Science - Symbolic Computation ,Mathematics - Rings and Algebras - Abstract
Consider a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ of univariate polynomials over a field $\mathbb{K}$. We study the problem of computing the column rank profile of $\mathbf{F}$. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of $\mathbf{F}$ with a rank-sensitive complexity of $O\tilde{~}(r^{\omega-2} n (m+D))$ operations in $\mathbb{K}$. Here, $D$ is the sum of row degrees of $\mathbf{F}$, $\omega$ is the exponent of matrix multiplication, and $O\tilde{~}(\cdot)$ hides logarithmic factors., Comment: 10 pages, 2 algorithms, 1 figure
- Published
- 2022
- Full Text
- View/download PDF
6. Polypyrrole-based nanocomposites doped with both salicylate/molybdate and graphene oxide for enhanced corrosion resistance on low-carbon steel
- Author
-
Ha Manh Hung, Tran Minh Thi, Le Van Khoe, Le Minh Duc, Hoang Thi Tuyet Lan, Lai Thi Hoan, Vu Thi Xuan, Nguyen Thi Bich Viet, Ngo Xuan Luong, Nguyen Thuy Chinh, Thai Hoang, Vu Thi Hương, and Vu Quoc Trung
- Subjects
polypyrrole ,graphene oxide ,molybdate doping ,nanocomposite ,corrosion protection ,self-healing protection ,Polymers and polymer manufacture ,TP1080-1185 - Abstract
In this work, polypyrrole-based nanocomposites doped with graphene oxide, molybdate, and salicylate (PPy/GO/Mo/Sal) were synthesized via in situ electrochemical polymerization to enhance the anti-corrosion protection performance of polymer coatings. The morphology and structures of the coatings were characterized by SEM, EDX, FTIR, Raman spectroscopy, and XRD. The protection abilities of coatings against corrosion were investigated in 0.1 M NaCl solution with EIS potentiodynamic polarization, salt spray test, and open-circuit potential (OCP) measurements. The results showed that with the presence of both molybdate/salicylate and GO in the PPy matrix, the nanocomposite coating exhibited an excellent protection ability against corrosion for low-carbon steel, better than that with only GO as filler. Compared to the nanocomposites doped with only salicylate or salicylate/GO, the one doped with both molybdate/salicylate and GO exhibited the longest protection plateau (ca. 100 h) on the OCP-time curves with some fluctuation points known as the self-healing action of molybdate dopant. It also resulted in a decrease in the corrosion current (Tafel plots), a higher impedance (Bode plot), and a better protection performance in salt spray tests. In this case, the anti-corrosion ability of the coatings was provided through a barrier and self-healing mechanism.
- Published
- 2023
- Full Text
- View/download PDF
7. Computing critical points for invariant algebraic systems
- Author
-
Faugère, Jean-Charles, Labahn, George, Din, Mohab Safey El, Schost, Éric, and Vu, Thi Xuan
- Subjects
Computer Science - Symbolic Computation - Abstract
Let $\mathbf{K}$ be a field and $\phi$, $\mathbf{f} = (f_1, \ldots, f_s)$ in $\mathbf{K}[x_1, \dots, x_n]$ be multivariate polynomials (with $s < n$) invariant under the action of $\mathcal{S}_n$, the group of permutations of $\{1, \dots, n\}$. We consider the problem of computing the points at which $\mathbf{f}$ vanish and the Jacobian matrix associated to $\mathbf{f}, \phi$ is rank deficient provided that this set is finite. We exploit the invariance properties of the input to split the solution space according to the orbits of $\mathcal{S}_n$. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in $d^s$, ${{n+d}\choose{d}}$ and $\binom{n}{s+1}$ where $d$ is the maximum degree of the input polynomials. When $d,s$ are fixed, this is polynomial in $n$ while when $s$ is fixed and $d \simeq n$ this yields an exponential speed-up with respect to the usual polynomial system solving algorithms.
- Published
- 2020
8. Homotopy techniques for solving sparse column support determinantal polynomial systems
- Author
-
Labahn, George, Din, Mohab Safey El, Schost, Éric, and Vu, Thi Xuan
- Subjects
Computer Science - Symbolic Computation - Abstract
Let $\mathbf{K}$ be a field of characteristic zero with $\overline{\mathbf{K}}$ its algebraic closure. Given a sequence of polynomials $\mathbf{g} = (g_1, \ldots, g_s) \in \mathbf{K}[x_1, \ldots , x_n]^s$ and a polynomial matrix $\mathbf{F} = [f_{i,j}] \in \mathbf{K}[x_1, \ldots, x_n]^{p \times q}$, with $p \leq q$, we are interested in determining the isolated points of $V_p(\mathbf{F},\mathbf{g})$, the algebraic set of points in $\overline{\mathbf{K}}$ at which all polynomials in $\mathbf{g}$ and all $p$-minors of $\mathbf{F}$ vanish, under the assumption $n = q - p + s + 1$. Such polynomial systems arise in a variety of applications including for example polynomial optimization and computational geometry. We design a randomized sparse homotopy algorithm for computing the isolated points in $V_p(\mathbf{F},\mathbf{g})$ which takes advantage of the determinantal structure of the system defining $V_p(\mathbf{F}, \mathbf{g})$. Its complexity is polynomial in the maximum number of isolated solutions to such systems sharing the same sparsity pattern and in some combinatorial quantities attached to the structure of such systems. It is the first algorithm which takes advantage both on the determinantal structure and sparsity of input polynomials. We also derive complexity bounds for the particular but important case where $\mathbf{g}$ and the columns of $\mathbf{F}$ satisfy weighted degree constraints. Such systems arise naturally in the computation of critical points of maps restricted to algebraic sets when both are invariant by the action of the symmetric group.
- Published
- 2020
9. Solving determinantal systems using homotopy techniques
- Author
-
Hauenstein, Jonathan D., Din, Mohab Safey El, Schost, Éric, and Vu, Thi Xuan
- Subjects
Computer Science - Symbolic Computation - Abstract
Let $\K$ be a field of characteristic zero and $\Kbar$ be an algebraic closure of $\K$. Consider a sequence of polynomials$G=(g\_1,\dots,g\_s)$ in $\K[X\_1,\dots,X\_n]$, a polynomial matrix $\F=[f\_{i,j}] \in \K[X\_1,\dots,X\_n]^{p \times q}$, with $p \leq q$,and the algebraic set $V\_p(F, G)$ of points in $\KKbar$ at which all polynomials in $\G$ and all $p$-minors of $\F$vanish. Such polynomial systems appear naturally in e.g. polynomial optimization, computational geometry.We provide bounds on the number of isolated points in $V\_p(F, G)$ depending on the maxima of the degrees in rows (resp. columns) of $\F$. Next, we design homotopy algorithms for computing those points. These algorithms take advantage of the determinantal structure of the system defining $V\_p(F, G)$. In particular, the algorithms run in time that is polynomial in the bound on the number of isolated points.
- Published
- 2018
10. Computing Canonical Bases of Modules of Univariate Relations
- Author
-
Neiger, Vincent and Vu, Thi Xuan
- Subjects
Computer Science - Symbolic Computation - Abstract
We study the computation of canonical bases of sets of univariate relations $(p_1,\ldots,p_m) \in \mathbb{K}[x]^{m}$ such that $p_1 f_1 + \cdots + p_m f_m = 0$; here, the input elements $f_1,\ldots,f_m$ are from a quotient $\mathbb{K}[x]^n/\mathcal{M}$, where $\mathcal{M}$ is a $\mathbb{K}[x]$-module of rank $n$ given by a basis $\mathbf{M}\in\mathbb{K}[x]^{n\times n}$ in Hermite form. We exploit the triangular shape of $\mathbf{M}$ to generalize a divide-and-conquer approach which originates from fast minimal approximant basis algorithms. Besides recent techniques for this approach, we rely on high-order lifting to perform fast modular products of polynomial matrices of the form $\mathbf{P}\mathbf{F} \bmod \mathbf{M}$. Our algorithm uses $O\tilde{~}(m^{\omega-1}D + n^{\omega} D/m)$ operations in $\mathbb{K}$, where $D = \mathrm{deg}(\det(\mathbf{M}))$ is the $\mathbb{K}$-vector space dimension of $\mathbb{K}[x]^n/\mathcal{M}$, $O\tilde{~}(\cdot)$ indicates that logarithmic factors are omitted, and $\omega$ is the exponent of matrix multiplication. This had previously only been achieved for a diagonal matrix $\mathbf{M}$. Furthermore, our algorithm can be used to compute the shifted Popov form of a nonsingular matrix within the same cost bound, up to logarithmic factors, as the previously fastest known algorithm, which is randomized., Comment: 8 pages, uses acmart sigconf
- Published
- 2017
- Full Text
- View/download PDF
11. Green Nanoarchitectonics Using Cleistocalyx Operculatus Leaf Extract in the Preparation of Multifunctional Graphene Oxide/Fe3O4/Ag Nanomaterials for Water Decontamination and Disinfection
- Author
-
Le, Thi Thu Huong, Ngo, Thi Thuong, Nguyen, Thi Hong Hanh, Pham, Trung Duc, Vu, Thi Xuan Huong, and Tran, Quang Vinh
- Published
- 2022
- Full Text
- View/download PDF
12. Homotopy techniques for solving sparse column support determinantal polynomial systems
- Author
-
Labahn, George, Safey El Din, Mohab, Schost, Éric, and Vu, Thi Xuan
- Published
- 2021
- Full Text
- View/download PDF
13. Anti-inflammatory Clerodane Dinorditerpenoids from the Tinospora sinensis Leaves
- Author
-
Bui Thi Mai Anh, Tran Thi Quynh Van, Nguyen Thi Mai, Le Thi Huyen, Do Thi Trang, Vu Thi Xuan, Tran Thuy Nga, Phan Van Kiem, Bui Huu Tai, Nguyen Xuan Nhiem, and Do Thi Thao
- Subjects
General Pharmacology, Toxicology and Pharmaceutics - Published
- 2022
- Full Text
- View/download PDF
14. Faster real root decision algorithm for symmetric polynomials
- Author
-
Labahn, George, primary, Riener, Cordian, additional, Safey El Din, Mohab, additional, Schost, Eric, additional, and Vu, Thi Xuan, additional
- Published
- 2023
- Full Text
- View/download PDF
15. Review of: "Negativity, zeros and extreme values of several polynomials"
- Author
-
Vu, Thi Xuan, primary
- Published
- 2023
- Full Text
- View/download PDF
16. Computing critical points for invariant algebraic systems
- Author
-
Faugère, Jean-Charles, primary, Labahn, George, additional, Safey El Din, Mohab, additional, Schost, Éric, additional, and Vu, Thi Xuan, additional
- Published
- 2023
- Full Text
- View/download PDF
17. Chemical constituents from Schisandra perulata and their cytotoxic activity
- Author
-
Tran Tuan Anh, Vu Van Doan, Vu Thi Xuan, Bui Quang Tuan, Bui Huu Tai, Phan Van Kiem, Nguyen Xuan Nhiem, Nguyen The Cuong, SeonJu Park, Yohan Seo, Wan Namkung, Seung Hyun Kim, and Nguyen Thi Mai
- Subjects
biology ,010405 organic chemistry ,Positive control ,Plant Science ,biology.organism_classification ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,010404 medicinal & biomolecular chemistry ,chemistry.chemical_compound ,chemistry ,Cell culture ,Reagent ,Chemical constituents ,Cytotoxic T cell ,Agronomy and Crop Science ,IC50 ,Tetrahydrofuran ,Biotechnology ,Nuclear chemistry ,Schisandra - Abstract
Two new compounds, schisandrulata A (1) and schisandrulata B (5), and nine known compounds, 6-O-benzoylgomisin O (2), kadsutherin (3), γ-schizandrin (4), pinotatol (6), schisphentetralone A (7), (–)-8′-epi-aristotetralone (8), (–)-8,8′-epi-aristotetralone (9), rel-(8R,8′R)-dimethyl-(7S,7′R)-bis(3,4-methylenedioxyphenyl)tetrahydrofuran (10) and (-)-machilusin (11) were isolated from the leaves of Schisandra perulata Gagnep. Their chemical structures were determined by means of HR-ESI-MS, NMR, and CD spectra. All the compounds were evaluated for their cytotoxic activity against the human oral cancer (CAL27) and human breast cancer (MDA-MB231) cell lines. Compounds 1, 4, 7, and 9 showed potent cytotoxic activity against CAL27 cell line with IC50 values of 1.8 ± 0.2, 1.2 ± 0.1, 1.2 ± 0.2, and 2.0 ± 0.1 μM, respectively, indicating that they have stronger cytotoxic activity than that of the positive control capecitabine (IC50 value of 8.20 ± 0.75 μM). Similarly, compounds 1, 4, 7, and 9 also exhibited potent activity against the MDA-MB231 cell line with IC50 values of 3.5 ± 0.1, 1.80 ± 0.2, 0.9 ± 0.2, and 3.4 ± 0.3 μM, respectively. These results indicated that compounds 1, 4, 7, and 9 could be potential anticancer reagents for further drug discovery research.
- Published
- 2021
- Full Text
- View/download PDF
18. Computing Critical Points for Algebraic Systems Defined by Hyperoctahedral Invariant Polynomials
- Author
-
Vu, Thi Xuan, primary
- Published
- 2022
- Full Text
- View/download PDF
19. Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix
- Author
-
Labahn, George, primary, Neiger, Vincent, additional, Vu, Thi Xuan, additional, and Zhou, Wei, additional
- Published
- 2022
- Full Text
- View/download PDF
20. Triterpenoid glycosides from the rhizomes of Allium ascalonicum and their anoctamin-1 inhibitory activity
- Author
-
Nguyen Thi Mai, Vu Van Doan, Tran Thuy Nga, Bui Huu Tai, Phan Van Kiem, Vu Thi Xuan, Yohan Seo, Seung Hyun Kim, Wan Namkung, Pham Hai Yen, Nguyen Xuan Nhiem, Duong Thi Dung, and Seon Ju Park
- Subjects
chemistry.chemical_classification ,Traditional medicine ,010405 organic chemistry ,Organic Chemistry ,Glycoside ,Plant Science ,Allium ascalonicum ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,Analytical Chemistry ,Rhizome ,010404 medicinal & biomolecular chemistry ,Triterpenoid ,chemistry - Abstract
Ten triterpenoid glycosides including two undescribed compounds (1 and 2) were isolated from the methanol extract of Allium ascalonicum rhizomes. These compounds were structurally elucidated to be 3β-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl-19α-hydroxyolean-12-ene-28-oic acid 28-O-[α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl] ester (1), 3-O-β-D-glucopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-α-L-arabinopyranosyl-3β,19α-dihydroxyoleanane-12-en-28-oic acid (2), lactifoloside C (3), lactifoloside H (4), randiasaponin IV (5), kudinoside G (6), ilexkudinoside W (7), lactifoloside G (8), kudinoside D (9), and ilexkudinoside T (10) by analyzing their HR-ESI-MS, NMR spectral data and by comparison with those reported in the literature. Compounds 1–10 were evaluated for anoctamin-1 (ANO1) inhibitory activity using yellow fluorescent protein reduction assays. At the concentration of 30 µM, compounds 2 and 9 displayed moderate ANO1 inhibitory percentages of 28.9 ± 0.85% and 26.2 ± 0.65%, respectively.
- Published
- 2022
- Full Text
- View/download PDF
21. Homotopy algorithms for solving structured determinantal systems
- Author
-
Vu, Thi Xuan, Cheriton School of Computer Science [Waterloo] (CS), University of Waterloo [Waterloo], Polynomial Systems (PolSys), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (France), University of Waterloo (Canada), Mohab Safey El Din, Sorbonne Université (France), George Labahn, University of Waterloo (Canada), Éric Schost, University of Waterloo (Canada), and Vu, Thi Xuan
- Subjects
Symbolic computation ,Symbolic homotopy continuation ,Système d'équations algébriques ,Polynomial systems solving ,Systèmes polynomiaux invariants ,Homotopie symbolique ,[INFO]Computer Science [cs] ,[MATH] Mathematics [math] ,[INFO] Computer Science [cs] ,[MATH]Mathematics [math] ,Calcul formel et symbolique ,Invariant algebraic systems ,Determinantal systems - Abstract
Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in real algebraic geometry. The goal of this thesis is to provide efficient algorithms to solve such structured systems. In order to solve the first kind of systems, we design efficient algorithms by using the symbolic homotopy continuation techniques. While the homotopy methods, in both numeric and symbolic, are well-understood and widely used in polynomial system solving for square systems, the use of these methods to solve over-detemined systems is not so clear. Meanwhile, determinantal systems are over-determined with more equations than unknowns. We provide probabilistic homotopy algorithms which take advantage of the determinantal structure to compute isolated points in the zero-sets of determinantal systems. The runtimes of our algorithms are polynomial in the sum of the multiplicities of isolated points and the degree of the homotopy curve. We also give the bounds on the number of isolated points that we have to compute in three contexts: all entries of the input are in classical polynomial rings, all these polynomials are sparse, and they are weighted polynomials. In the second half of the thesis, we deal with the problem of finding critical points of a symmetric polynomial map on an invariant algebraic set. We exploit the invariance properties of the input to split the solution space according to the orbits of the symmetric group. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in the number of points that we have to compute. Our results are illustrated by applications in studying real algebraic sets defined by invariant polynomial systems by the means of the critical point method., Les systèmes polynomiaux multivariés apparaissant dans de nombreuses applications ont des structures spéciales et les systèmes invariants apparaissent dans un large éventail d'applications telles que dans l’optimisation polynomiale et des questions connexes en géométrie algébrique réelle. Le but de cette thèse est de fournir des algorithmes efficaces pour résoudre de tels systèmes structurés. Afin de résoudre le premier type de systèmes, nous concevons des algorithmes efficaces en utilisant les techniques d’homotopie symbolique. Alors que les méthodes d'homotopie, à la fois numériques et symboliques, sont bien comprises et largement utilisées dans la résolution de systèmes polynomiaux pour les systèmes carrés, l'utilisation de ces méthodes pour résoudre des systèmes surdéterminés n'est pas si claire. Hors, les systèmes déterminants sont surdéterminés avec plus d'équations que d'inconnues. Nous fournissons des algorithmes d'homotopie probabilistes qui tirent parti de la structure déterminantielle pour calculer des points isolés dans les ensembles des zéros de tels systèmes. Les temps d'exécution de nos algorithmes sont polynomiaux dans la somme des multiplicités des points isolés et du degré de la courbe d'homotopie. Nous donnons également des bornes sur le nombre de points isolés que nous devons calculer dans trois contextes: toutes les termes de l'entrée sont dans des anneaux polynomiaux classiques, tous ces polynômes sont creux, et ce sont des polynômes à degrés pondérés. Dans la seconde moitié de la thèse, nous abordons le problème de la recherche de points critiques d'une application polynomiale symétrique sur un ensemble algébrique invariant. Nous exploitons les propriétés d'invariance de l'entrée pour diviser l'espace de solution en fonction des orbites du groupe symétrique. Cela nous permet de concevoir un algorithme qui donne une description triangulaire de l'espace des solutions et qui s'exécute en temps polynomial dans le nombre de points que nous devons calculer. Nos résultats sont illustrés par des applications à l'étude d'ensembles algébriques réels définis par des systèmes polynomiaux invariants au moyen de la méthode des points critiques.
- Published
- 2020
22. Design, Synthesis and In vitro Cytotoxic Evaluation of Novel Hybrids of Artemisinin and Quinazolinone
- Author
-
Vu, Tran Khac, primary, Nguyen, Bach Xuan, additional, Duy, Linh Nguyen Pham, additional, Truong, Thuc Bao Nguyen, additional, Phung, Anh Tuan, additional, Phuong, Nguyen Thi Bich, additional, Van, Tran Thi Hai, additional, and Vu, Thi Xuan, additional
- Published
- 2021
- Full Text
- View/download PDF
23. Development and Selection of Purple Sweet Corn Inbred Lines
- Author
-
Nguyen Trung Duc, Pham Quang Tuan, Vu Van Liet, Vu Thi Xuan Binh, and Nguyen Thi Nguyet Anh
- Subjects
Waxy corn ,Brix ,chemistry.chemical_compound ,Horticulture ,Inbred strain ,chemistry ,Anthocyanin ,Spring season ,Biology ,biology.organism_classification - Abstract
The aim of this study was to developed purple sweet corn inbred lines from a cross between purple waxy corn and white sweet corn in Vietnam. Twenty elite inbred lines were top crossed with two testers in Spring season 2020 to estimate the general combining ability. Nine lines with Brix > 16, thin pericarp 100mg/100g can be classified as super sweet purple sweet corn lines. Five lines had high GCA regarding marketable yield (UV10, UV24, UV40, UV46, UV71), two lines has high GCA on Brix (UV12, UV16), and five lines had high GCA on anthocyanin content (UV35, UV36, UV38, UV46, UV73). Taken together, UV10 and UV12 lines are super sweet purple sweet corn lines and have high GCA for marketable yield and quality, respectively. This is the first report on the development and selection of purple sweet corn inbred lines in Vietnam.
- Published
- 2021
- Full Text
- View/download PDF
24. Solving determinantal systems using homotopy techniques
- Author
-
Hauenstein, Jon D., primary, Safey El Din, Mohab, additional, Schost, Éric, additional, and Vu, Thi Xuan, additional
- Published
- 2021
- Full Text
- View/download PDF
25. Algorithmes d'homotopie pour la résolution de systèmes déterminants structurés
- Author
-
Vu, Thi Xuan, Cheriton School of Computer Science [Waterloo] (CS), University of Waterloo [Waterloo], Polynomial Systems (PolSys), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (France), University of Waterloo (Canada), Mohab Safey El Din, Sorbonne Université (France), George Labahn, University of Waterloo (Canada), and Éric Schost, University of Waterloo (Canada)
- Subjects
Symbolic computation ,Symbolic homotopy continuation ,Système d'équations algébriques ,Polynomial systems solving ,Systèmes polynomiaux invariants ,Homotopie symbolique ,[INFO]Computer Science [cs] ,[MATH]Mathematics [math] ,Calcul formel et symbolique ,Invariant algebraic systems ,Determinantal systems - Abstract
Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in real algebraic geometry. The goal of this thesis is to provide efficient algorithms to solve such structured systems. In order to solve the first kind of systems, we design efficient algorithms by using the symbolic homotopy continuation techniques. While the homotopy methods, in both numeric and symbolic, are well-understood and widely used in polynomial system solving for square systems, the use of these methods to solve over-detemined systems is not so clear. Meanwhile, determinantal systems are over-determined with more equations than unknowns. We provide probabilistic homotopy algorithms which take advantage of the determinantal structure to compute isolated points in the zero-sets of determinantal systems. The runtimes of our algorithms are polynomial in the sum of the multiplicities of isolated points and the degree of the homotopy curve. We also give the bounds on the number of isolated points that we have to compute in three contexts: all entries of the input are in classical polynomial rings, all these polynomials are sparse, and they are weighted polynomials. In the second half of the thesis, we deal with the problem of finding critical points of a symmetric polynomial map on an invariant algebraic set. We exploit the invariance properties of the input to split the solution space according to the orbits of the symmetric group. This allows us to design an algorithm which gives a triangular description of the solution space and which runs in time polynomial in the number of points that we have to compute. Our results are illustrated by applications in studying real algebraic sets defined by invariant polynomial systems by the means of the critical point method.; Les systèmes polynomiaux multivariés apparaissant dans de nombreuses applications ont des structures spéciales et les systèmes invariants apparaissent dans un large éventail d'applications telles que dans l’optimisation polynomiale et des questions connexes en géométrie algébrique réelle. Le but de cette thèse est de fournir des algorithmes efficaces pour résoudre de tels systèmes structurés. Afin de résoudre le premier type de systèmes, nous concevons des algorithmes efficaces en utilisant les techniques d’homotopie symbolique. Alors que les méthodes d'homotopie, à la fois numériques et symboliques, sont bien comprises et largement utilisées dans la résolution de systèmes polynomiaux pour les systèmes carrés, l'utilisation de ces méthodes pour résoudre des systèmes surdéterminés n'est pas si claire. Hors, les systèmes déterminants sont surdéterminés avec plus d'équations que d'inconnues. Nous fournissons des algorithmes d'homotopie probabilistes qui tirent parti de la structure déterminantielle pour calculer des points isolés dans les ensembles des zéros de tels systèmes. Les temps d'exécution de nos algorithmes sont polynomiaux dans la somme des multiplicités des points isolés et du degré de la courbe d'homotopie. Nous donnons également des bornes sur le nombre de points isolés que nous devons calculer dans trois contextes: toutes les termes de l'entrée sont dans des anneaux polynomiaux classiques, tous ces polynômes sont creux, et ce sont des polynômes à degrés pondérés. Dans la seconde moitié de la thèse, nous abordons le problème de la recherche de points critiques d'une application polynomiale symétrique sur un ensemble algébrique invariant. Nous exploitons les propriétés d'invariance de l'entrée pour diviser l'espace de solution en fonction des orbites du groupe symétrique. Cela nous permet de concevoir un algorithme qui donne une description triangulaire de l'espace des solutions et qui s'exécute en temps polynomial dans le nombre de points que nous devons calculer. Nos résultats sont illustrés par des applications à l'étude d'ensembles algébriques réels définis par des systèmes polynomiaux invariants au moyen de la méthode des points critiques.
- Published
- 2020
26. Development and Selection of Purple Sweet Corn Inbred Lines
- Author
-
Tuan, Pham Quang, primary, Trung Duc, Nguyen, additional, Anh, Nguyen Thi Nguyet, additional, Binh, Vu Thi Xuan, additional, and Liet, Vu Van, additional
- Published
- 2021
- Full Text
- View/download PDF
27. Green Nanoarchitectonics Using Cleistocalyx Operculatus Leaf Extract in the Preparation of Multifunctional Graphene Oxide/Fe3O4/Ag Nanomaterials for Water Decontamination and Disinfection.
- Author
-
Le, Thi Thu Huong, Ngo, Thi Thuong, Nguyen, Thi Hong Hanh, Pham, Trung Duc, Vu, Thi Xuan Huong, and Tran, Quang Vinh
- Subjects
WATER disinfection ,NANOSTRUCTURED materials ,CHEMICAL oxygen demand ,WATER purification ,GRAPHENE ,CANDIDA albicans - Abstract
The demand for clean water has been increasing around the world. In this study, graphene oxide/Fe
3 O4 /Ag nanomaterials with different graphene oxide:Fe3 O4 ratios were prepared and determined the best formulations for water treatment. Ag nanoparticles were incorporated into the materials by a green reduction method using Cleistocalyx Operculatus leaf extract for the first time. The synthesized materials were characterized by FTIR, Raman, XRD, FESEM, EDX and VSM methods. The characterizations confirm that the materials have been prepared successfully with various element compositions and can be separated by outer magnetic fields. The results show that the GF31A sample with graphene oxide:Fe3 O4 ratio of 3:1 and about 5 wt.% Ag in the composition exhibits the highest efficiency for chemical oxygen demand (COD), total nitrogen (TN) and PO4 3− removals. This material also induces good antibacterial and antifungal activity on harmful gram (+), gram (−), and fungi microorganisms such as Staphylococcus aureus, Salmonella enterica, Candida albicans with small IC50 values (from 1.5 to 11.1 mg/L). More than 70% of COD, TN, PO4 3− and 100% of E. coli have been removed from two real water samples treated with GF31A (0.1 g/100 mL). The results reveal that GF31A is a potential agent for water treatment application. Besides the newly using of Cleistocalyx Operculatus in the synthesis, this is also the first time various graphene oxide/Fe3 O4 /Ag materials have been systematically investigated for both water decontamination and disinfection with the ease of magnetically separation. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
28. Triterpenoid glycosides from the rhizomes of
- Author
-
Nguyen Thi, Mai, Duong Thi, Dung, Tran Thuy, Nga, Vu Thi, Xuan, Vu Van, Doan, Bui Huu, Tai, Nguyen Xuan, Nhiem, Pham Hai, Yen, Phan Van, Kiem, Yohan, Seo, Wan, Namkung, SeonJu, Park, and Seung Hyun, Kim
- Subjects
Molecular Structure ,Glycosides ,Saponins ,Anoctamin-1 ,Rhizome ,Shallots ,Triterpenes - Abstract
Ten triterpenoid glycosides including two undescribed compounds (
- Published
- 2020
29. Computing Canonical Bases of Modules of Univariate Relations
- Author
-
Thi Xuan Vu, Vincent Neiger, Department of Applied Mathematics and Computer Science [Lyngby] (DTU Compute), Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Arithmetic and Computing (ARIC), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Vu Thi Xuan gratefully acknowledges financial support provided by the scholarship Explora Doc from Région Rhône-Alpes, France, and by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon within the program 'Investissements d'Avenir' (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR)., The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number 609405 (COFUNDPostdocDTU)., ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2011), European Project: 609405,EC:FP7:PEOPLE,FP7-PEOPLE-2013-COFUND,COFUNDPOSTDOCDTU(2014), Technical University of Denmark [Lyngby] (DTU), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
FOS: Computer and information sciences ,[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,Polynomial (hyperelastic model) ,Computer Science - Symbolic Computation ,syzygy module ,010102 general mathematics ,010103 numerical & computational mathematics ,Symbolic Computation (cs.SC) ,Rank (differential topology) ,01 natural sciences ,Hermite normal form ,Omega ,Shifted Popov form ,law.invention ,Combinatorics ,Matrix (mathematics) ,division with remainder ,univariate equations ,Invertible matrix ,law ,Exponent ,Polynomial matrix ,0101 mathematics ,Quotient ,Mathematics - Abstract
We study the computation of canonical bases of sets of univariate relations $(p_1,\ldots,p_m) \in \mathbb{K}[x]^{m}$ such that $p_1 f_1 + \cdots + p_m f_m = 0$; here, the input elements $f_1,\ldots,f_m$ are from a quotient $\mathbb{K}[x]^n/\mathcal{M}$, where $\mathcal{M}$ is a $\mathbb{K}[x]$-module of rank $n$ given by a basis $\mathbf{M}\in\mathbb{K}[x]^{n\times n}$ in Hermite form. We exploit the triangular shape of $\mathbf{M}$ to generalize a divide-and-conquer approach which originates from fast minimal approximant basis algorithms. Besides recent techniques for this approach, we rely on high-order lifting to perform fast modular products of polynomial matrices of the form $\mathbf{P}\mathbf{F} \bmod \mathbf{M}$. Our algorithm uses $O\tilde{~}(m^{\omega-1}D + n^{\omega} D/m)$ operations in $\mathbb{K}$, where $D = \mathrm{deg}(\det(\mathbf{M}))$ is the $\mathbb{K}$-vector space dimension of $\mathbb{K}[x]^n/\mathcal{M}$, $O\tilde{~}(\cdot)$ indicates that logarithmic factors are omitted, and $\omega$ is the exponent of matrix multiplication. This had previously only been achieved for a diagonal matrix $\mathbf{M}$. Furthermore, our algorithm can be used to compute the shifted Popov form of a nonsingular matrix within the same cost bound, up to logarithmic factors, as the previously fastest known algorithm, which is randomized., Comment: 8 pages, uses acmart sigconf
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.