1. Self-Supervised Learning of Disentangled Representations for Multivariate Time-Series
- Author
-
Chang, Ching, Chan, Chiao-Tung, Wang, Wei-Yao, Peng, Wen-Chih, and Chen, Tien-Fu
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Multivariate time-series data in fields like healthcare and industry are informative but challenging due to high dimensionality and lack of labels. Recent self-supervised learning methods excel in learning rich representations without labels but struggle with disentangled embeddings and inductive bias issues like transformation-invariance. To address these challenges, we introduce TimeDRL, a framework for multivariate time-series representation learning with dual-level disentangled embeddings. TimeDRL features: (i) disentangled timestamp-level and instance-level embeddings using a [CLS] token strategy; (ii) timestamp-predictive and instance-contrastive tasks for representation learning; and (iii) avoidance of augmentation methods to eliminate inductive biases. Experiments on forecasting and classification datasets show TimeDRL outperforms existing methods, with further validation in semi-supervised settings with limited labeled data., Comment: This submission has been withdrawn to avoid duplication with a full version of the paper that is already available in another arXiv entry (arXiv:2410.12606). The withdrawn version was a short format prepared for a NeurIPS workshop and is no longer necessary as a separate arXiv submission
- Published
- 2024