7 results on '"Warnakula WADLR"'
Search Results
2. Functional characterization of peroxiredoxin 5 from yellowtail clownfish (Amphiprion clarkii): Immunological expression assessment, antioxidant activities, heavy metal detoxification, and nitrosative stress mitigation.
- Author
-
Rodrigo DCG, Udayantha HMV, Liyanage DS, Omeka WKM, Kodagoda YK, Hanchapola HACR, Dilshan MAH, Ganepola GANP, Warnakula WADLR, Kim G, Kim J, Lee J, Wan Q, and Lee J
- Abstract
Peroxiredoxin 5 (Prdx5) is the last recognized member of Prdx family. It is a unique, atypical, 2-Cys antioxidant enzyme, protecting cells from death caused by reactive oxygen species (ROS). In this study, the Prdx5 ortholog of Amphiprion clarkii (AcPrdx5) was identified and characterized to explore its specific structural features and functional properties. The open reading frame of AcPrdx5 is 573 bp long and encodes 190 amino acids containing a mitochondrial targeting sequence, thioredoxin domain, and two conserved cysteine residues responsible for antioxidant function. The predicted molecular weight and theoretical isoelectric point of AcPrdx5 are 20.3 kDa and 9.01, respectively. AcPrdx5 sequences were found to be highly conserved across the other orthologs from various organisms and it distinctively clustered within the fish Prdx5 subclade of the phylogenetic tree. The expression of AcPrdx5 was ubiquitously detected among twelve tested tissues, with the highest level in the brain. Furthermore, the mRNA levels of AcPrdx5 in the blood and head-kidney tissues were significantly (p < 0.05) upregulated following polyinosinic-polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi immune challenge. A concentration-dependent antioxidant potential of recombinant AcPrdx5 was observed in insulin disulfide bond reduction, heavy metal detoxification, free radical and hydrogen peroxide (H
2 O2 ) scavenging assays. Additionally, AcPrdx5 overexpression in fathead minnow (FHM) cells upregulated the antioxidant-associated gene (Rrm1, MAPK, SOD2, and PRDX1) expression after H2 O2 treatment, and promoted cell viability upon arsenic (As) exposure. In macrophages, AcPrdx5 overexpression effectively suppressed substantial nitric oxide production under lipopolysaccharide treatment. Collectively, our results suggest that AcPrdx5 may play roles in both antioxidant defense system and innate immune response against pathogenic invasions in A. clarkii., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
3. Insights into the functional properties of thioredoxin domain-containing protein 12 (TXNDC12): Antioxidant activity, immunological expression, and wound-healing effect in yellowtail clownfish (Amphiprion clarkii).
- Author
-
Dilshan MAH, Omeka WKM, Udayantha HMV, Liyanage DS, Rodrigo DCG, Warnakula WADLR, Hanchapola HACR, Kodagoda YK, Ganepola GANP, Kim J, Kim G, Lee J, Jeong T, Lee S, Wan Q, and Lee J
- Subjects
- Animals, Wound Healing immunology, Wound Healing drug effects, Lipopolysaccharides pharmacology, Gene Expression Profiling veterinary, Phylogeny, Thioredoxins genetics, Thioredoxins immunology, Thioredoxins chemistry, Thioredoxins metabolism, Mice, Fish Proteins genetics, Fish Proteins immunology, Fish Proteins chemistry, Antioxidants metabolism, Fish Diseases immunology, Vibrio physiology, Immunity, Innate genetics, Poly I-C pharmacology, Vibrio Infections immunology, Vibrio Infections veterinary, Perciformes immunology, Perciformes genetics, Gene Expression Regulation immunology, Gene Expression Regulation drug effects, Sequence Alignment veterinary, Amino Acid Sequence
- Abstract
Thioredoxin domain-containing protein 12 (TXNDC12) is a member of the thioredoxin-like superfamily that contributes to various thiol-dependent metabolic activities in all living organisms. In this research, the TXNDC12 gene from yellowtail clownfish (Amphiprion clarkii) was structurally characterized using in silico tools, assessed for immunological expression, and evaluated for biological activity using recombinant protein and cellular overexpression. The deduced coding sequence of AcTXNDC12 comprised a 522-bp nucleotide, encoding 173 amino acids with a predicted molecular mass of 19.198 kDa. The AcTXNDC12 protein consists of a
66 WCGAC70 active motif and a170 GDEL173 signature. The highest tissue-specific expression of AcTXNDC12 was observed in the brain tissue, with significant modulation observed in the blood and gill tissues following stimulation of polyinosinic: polycytidylic acid, lipopolysaccharides (LPS), and Vibrio harveyi. In functional assays, recombinant AcTXNDC12 protein (rAcTXNDC12) showed insulin disulfide reduction activity, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid) decolorization antioxidant capacity, and ferric (Fe3+ ) reducing antioxidant potential. Additionally, a significant reduction in nitric oxide production was observed in AcTXNDC12-overexpressed RAW 264.7 cells upon LPS stimulation. Furthermore, genes associated with the regulation of oxidative stress, including nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (Cat), peroxiredoxin 1 (Prx1), and ribonucleotide reductase catalytic subunit M1 (Rrm1) were significantly upregulated in fathead minnow cells overexpressing AcTXNDC12 in response to H2 O2 treatment. The scratch wound healing assay demonstrated tissue regeneration and cell proliferation ability upon AcTXNDC12 overexpression. Altogether, the current study elucidated the antioxidant activity, immunological importance, and wound-healing effect of the AcTXNDC12 gene in yellowtail clownfish, providing valuable insights for advancing the aquaculture of A. clarkii fish., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
4. Molecular depiction and functional delineation of E3 ubiquitin ligase MARCH5 in yellowtail clownfish (Amphiprion clarkii).
- Author
-
Jayamali BPMV, Wijerathna HMSM, Sirisena DMKP, Hanchapola HACR, Warnakula WADLR, Arachchi UPE, Liyanage DS, Jung S, Wan Q, and Lee J
- Abstract
Membrane-associated Ring-CH 5 (MARCH5) is a mitochondrial E3 ubiquitin ligase playing a key role in the regulation of mitochondrial dynamics. In mammals, MARCH5 negatively regulates mitochondrial antiviral signaling (MAVS) protein aggregation during viral infection and hampers downstream type I interferon signaling to prevent excessive immune activation. However, its precise functional role in the teleost immune system remains unclear. This study investigated the molecular characteristics and immune response of the MARCH5 ortholog in Amphiprion clarkii (A. clarkii; AcMARCH5). The predicted AcMARCH5 protein sequence consists of 287 amino acids with a molecular weight of 32.02 kDa and a theoretical isoelectric point of 9.11. It contains four C-terminal transmembrane (TM) domains and an N-terminal RING cysteine-histidine (CH) domain, which directly regulates ubiquitin transfer. Multiple sequence alignment revealed a high level of conservation between AcMARCH5 and its orthologs in other vertebrate species. Under normal physiological conditions, AcMARCH5 showed the highest mRNA expression in the muscle, brain, and kidney tissues of A. clarkii. Upon stimulation with polyinosinic:polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi, AcMARCH5 expression was drastically modulated. Functional assays showed that overexpression of AcMARCH5 in fathead minnow (FHM) cells downregulated antiviral gene expression, accompanied by enhanced viral hemorrhagic septicemia virus (VHSV) replication. In murine macrophages, AcMARCH5 overexpression markedly reduced the production of pro-inflammatory cytokines in response to poly I:C treatment. Additionally, AcMARCH5 exhibited an anti-apoptotic effect in H
2 O2 -treated FHM cells. Collectively, these results suggest that AcMARCH5 may play a role in maintaining cellular homeostasis under disease and stress conditions in A. clarkii., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
5. A comprehensive study on the multifunctional properties of galectin-4 in red-lip mullet (Planiliza haematocheilus): Insights into molecular interactions, antimicrobial defense, and cell proliferation.
- Author
-
Warnakula WADLR, Park CU, Sirisena DMKP, Tharanga EMT, Dilshan MAH, Rodrigo DCG, Sohn H, Wan Q, and Lee J
- Subjects
- Animals, Immunity, Innate genetics, Phylogeny, Amino Acid Sequence, Gene Expression Profiling veterinary, Fish Diseases immunology, Gene Expression Regulation immunology, Poly I-C pharmacology, Sequence Alignment veterinary, Lipopolysaccharides pharmacology, Fish Proteins genetics, Fish Proteins immunology, Fish Proteins chemistry, Cell Proliferation drug effects, Galectin 4 genetics, Galectin 4 immunology, Galectin 4 chemistry, Smegmamorpha immunology, Smegmamorpha genetics
- Abstract
Galectin-4 belongs to the galactoside-binding protein family and is a type of tandem repeat galectin. Despite previous studies indicating its importance in fish immunology, a comprehensive investigation is necessary to fully understand its role in immunomodulatory functions and cellular dynamics. Therefore, this study aimed to explore the immunomodulatory functions of galectin-4 with a particular focus on its antimicrobial and cellular proliferative properties. The open reading frame of PhGal4 spans 1092 base pairs and encodes a soluble protein of 363 amino acids with a theoretical isoelectric point (IEP) of 6.39 and a molecular weight of 39.411 kDa. Spatial expression analysis under normal physiological conditions revealed ubiquitous expression of PhGal4 across all examined tissues, with the highest level observed in intestinal tissue. Upon stimulation with poly I:C, LPS, and L. garvieae, a significant increase (p < 0.05) in PhGal4 expression was observed in both blood and spleen tissues. Subsequent subcellular localization assay demonstrated that PhGal4 was predominantly localized in the cytoplasm. The recombinant PhGal4 (rPhGal4) exhibited specific binding capabilities to pathogen-associated molecular patterns (PAMPs), including LPS and peptidoglycan, but not poly I:C. The rPhGal4 negatively affected the bacterial growth kinetics. Additionally, rPhGal4 demonstrated complete hemagglutination of fish erythrocytes, which could be inhibited by the presence of D-galactose and α-lactose. The overexpression of PhGal4 in FHM epithelial cells demonstrated a significant suppression of viral replication during VHSV infection. Furthermore, the in vitro scratch assay and WST-1 assay demonstrated a wound healing effect of PhGal4 overexpression in FHM cells, potentially achieved through the promotion of cell proliferation by activating genes involved in cell cycle regulation. In conclusion, the responsive expression to immune stimuli, antimicrobial properties, and cell proliferation promotion of PhGal4 suggest that it plays a crucial role in immunomodulation and cellular dynamics of red-lip mullet. The findings in this study shed light on the multifunctional nature of galectin-4 in teleost fish., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Galectin-8-like isoform X1 mediates antibacterial, antiviral, and antioxidant responses in red-lip mullet (Planiliza haematocheilus) through positive modulation of pro-inflammatory cytokine, chemokine, and enzymatic antioxidant activity.
- Author
-
Warnakula WADLR, Udayantha HMV, Liyanage DS, Tharanga EMT, Omeka WKM, Dilshan MAH, Hanchapola HACR, Jayasinghe JDHE, Jeong T, Wan Q, and Lee J
- Subjects
- Animals, Fish Diseases immunology, Cytokines metabolism, Immunity, Innate, Poly I-C immunology, Lactococcus physiology, Lipopolysaccharides immunology, Chemokines metabolism, Chemokines genetics, Protein Isoforms genetics, Protein Isoforms metabolism, Novirhabdovirus physiology, Novirhabdovirus immunology, Antiviral Agents metabolism, Fish Proteins genetics, Fish Proteins metabolism, Fish Proteins immunology, Smegmamorpha immunology, Smegmamorpha genetics, Galectins metabolism, Galectins genetics, Antioxidants metabolism
- Abstract
Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to β-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 μg/mL or 100 μg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H
2 O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet., Competing Interests: Declaration of competing interest The authors declare that they have no conflicts of interest., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
7. Galectin 9 restricts viral replication in teleost via autophagy-antiviral pathway and polarizes M2 macrophages for anti-inflammatory response: New insights into functional properties of fish Galectin-9 from Planiliza haematocheilus.
- Author
-
Warnakula WADLR, Udayantha HMV, Liyanage DS, Omeka WKM, Lim C, Kim G, Sirisena DMKP, Jayamali BPMV, Wan Q, and Lee J
- Subjects
- Animals, Mice, Anti-Bacterial Agents metabolism, Anti-Inflammatory Agents metabolism, Fishes genetics, Gram-Negative Bacteria, Gram-Positive Bacteria, Macrophages, RNA, Messenger metabolism, Antiviral Agents metabolism, Autophagy, Galectins genetics, Galectins metabolism, Smegmamorpha genetics, Virus Replication
- Abstract
Galectin 9 (Gal9) is a tandem repeat type ß-galactoside-binding galectin that mediates various cellular biochemical and immunological functions. Many studies have investigated the functional properties of Gal9 in mammals; however, knowledge of fish Gal9 is limited to antibacterial studies. In this context, our aim was to clone Gal9 from Planiliza haematocheilus (PhGal9) and investigate its structural and functional characteristics. We discovered the PhGal9 open reading frame, which was 969 base pairs long and encoded a 322 amino acid protein. PhGal9 had a projected molecular weight of 35.385 kDa but no signal peptide sequence. PhGal9 mRNA was ubiquitously produced in all investigated tissues but was predominant in the intestine, spleen, and brain. Its mRNA expression was increased in response to stimulation by Poly(I:C), LPS, and L. garvieae. The rPhGal9 exhibited a dose-dependent agglutination potential toward gram-positive and gram-negative bacteria at a minimum concentration of 50 μg/mL. Overexpression of PhGal9 promoted M2-like phenotype changes in mouse macrophages, and RT-qPCR analysis of M1 and M2 marker genes confirmed M2 polarization with upregulation of M2 marker genes. In the antiviral assay, the expression levels of Viral Hemorrhagic Septicemia Virus (VHSV) glycoproteins, phosphoproteins, nucleoproteins, non-virion proteins, matrix proteins, and RNA polymerase were significantly reduced in PhGal9-overexpressed cells. Furthermore, the mRNA expression of autophagic genes (sqstm1, tax1bp1b, rnf13, lc3, and atg5) and antiviral genes (viperin) were upregulated in PhGal9 overexpressed cells. For the first time in teleosts, our study demonstrated that PhGal9 promotes M2 macrophage polarization by upregulating M2-associated genes (egr2 and cmyc) and suppressing M1-associated genes (iNOS and IL-6). Furthermore, our results show that exogenous and endogenous PhGal9 prevented VHSV attachment and replication by neutralizing virion and autophagy, respectively. Gal9 may be a potent modulator of the antimicrobial immune response in teleost fish., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.