1. A deep equivariant neural network approach for efficient hybrid density functional calculations
- Author
-
Zechen Tang, He Li, Peize Lin, Xiaoxun Gong, Gan Jin, Lixin He, Hong Jiang, Xinguo Ren, Wenhui Duan, and Yong Xu
- Subjects
Science - Abstract
Abstract Hybrid density functional calculations are essential for accurate description of electronic structure, yet their widespread use is restricted by the substantial computational cost. Here we develop DeepH-hybrid, a deep equivariant neural network method for learning the hybrid-functional Hamiltonian as a function of material structure, which circumvents the time-consuming self-consistent field iterations and enables the study of large-scale materials with hybrid-functional accuracy. Our extensive experiments demonstrate good reliability as well as effective transferability and efficiency of the method. As a notable application, DeepH-hybrid is applied to study large-supercell Moiré-twisted materials, offering the first case study on how the inclusion of exact exchange affects flat bands in magic-angle twisted bilayer graphene. The work generalizes deep-learning electronic structure methods to beyond conventional density functional theory, facilitating the development of deep-learning-based ab initio methods.
- Published
- 2024
- Full Text
- View/download PDF