52 results on '"Westbury MV"'
Search Results
2. Late Pleistocene polar bear genomes reveal the timing of allele fixation in key genes associated with Arctic adaptation.
- Author
-
Sun Y, Lorenzen ED, and Westbury MV
- Subjects
- Animals, Arctic Regions, Adaptation, Physiological genetics, Evolution, Molecular, Selection, Genetic, Ursidae genetics, Alleles, Genome
- Abstract
The polar bear (Ursus maritimus) occupies a relatively narrow ecological niche, with many traits adapted for cold temperatures, movement across snow, ice and open water, and for consuming highly lipid-dense prey species. The divergence of polar bears from brown bears (Ursus arctos) and their adaptation to their Arctic lifestyle is a well-known example of rapid evolution. Previous research investigating whole genomes uncovered twelve key genes that are highly differentiated between polar and brown bears, show signatures of selection in the polar bear lineage, and are associated with polar bear adaptation to the Arctic environment. Further research suggested fixed derived alleles in these genes arose from selection on both standing variation and de novo mutations in the evolution of polar bears. Here, we reevaluate these findings based on a larger and geographically more representative dataset of 119 polar bears and 135 brown bears, and assess the timing of derived allele fixation in polar bears by incorporating the genomes of two Late Pleistocene individuals (aged 130-100,000 years old and 100-70,000 years old). In contrast with previous results, we found no evidence of derived alleles fixed in present-day polar bears within the key genes arising from de novo mutation. Most derived alleles fixed in present-day polar bears were also fixed in the Late Pleistocene polar bears, suggesting selection occurred prior to 70,000 years ago. However, some derived alleles fixed in present-day polar bears were not fixed in the two Late Pleistocene polar bears, including at sites within APOB, LYST, and TTN. These three genes are associated with cardiovascular function, metabolism, and pigmentation, suggesting selection may have acted on different loci at different times., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Elucidating the sustainability of 700 y of Inuvialuit beluga whale hunting in the Mackenzie River Delta, Northwest Territories, Canada.
- Author
-
Skovrind M, Louis M, Ferguson SH, Glazov DM, Litovka DI, Loseto L, Meschersky IG, Miller MM, Petr M, Postma L, Rozhnov VV, Scott M, Westbury MV, Szpak P, Friesen TM, and Lorenzen ED
- Subjects
- Animals, Northwest Territories, Female, Male, Hunting, Nitrogen Isotopes analysis, Carbon Isotopes analysis, DNA, Mitochondrial genetics, Inuit, Beluga Whale genetics
- Abstract
Beluga whales play a critical role in the subsistence economies and cultural heritage of Indigenous communities across the Arctic, yet the effects of Indigenous hunting on beluga whales remain unknown. Here, we integrate paleogenomics, genetic simulations, and stable δ
13 C and δ15 N isotope analysis to investigate 700 y of beluga subsistence hunting in the Mackenzie Delta area of northwestern Canada. Genetic identification of the zooarchaeological remains, which is based on radiocarbon dating, span three time periods (1290 to 1440 CE; 1450 to 1650 CE; 1800 to 1870 CE), indicates shifts across time in the sex ratio of the harvested belugas. The equal number of females and males harvested in 1450 to 1650 CE versus more males harvested in the two other time periods may reflect changes in hunting practices or temporal shifts in beluga availability. We find temporal shifts and sex-based differences in δ13 C of the harvested belugas across time, suggesting historical adaptability in the foraging ecology of the whales. We uncovered distinct mitochondrial diversity unique to the Mackenzie Delta belugas, but found no changes in nuclear genomic diversity nor any substructuring across time. Our findings indicate the genomic stability and continuity of the Mackenzie Delta beluga population across the 700 y surveyed, indicating the impact of Inuvialuit subsistence harvests on the genetic diversity of contemporary beluga individuals has been negligible., Competing Interests: Competing interests statement:The authors declare no competing interest.- Published
- 2024
- Full Text
- View/download PDF
4. When birds of a feather flock together: Severe genomic erosion and the implications for genetic rescue in an endangered island passerine.
- Author
-
Cavill EL, Morales HE, Sun X, Westbury MV, van Oosterhout C, Accouche W, Zora A, Schulze MJ, Shah N, Adam PA, Brooke ML, Sweet P, Gopalakrishnan S, and Gilbert MTP
- Abstract
The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR., Competing Interests: The authors have no conflicts of interest to declare., (© 2024 The Author(s). Evolutionary Applications published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
5. Camelus knoblochi genome reveals the complex evolutionary history of Old World camels.
- Author
-
Yuan J, Hu J, Liu W, Chen S, Zhang F, Wang S, Zhang Z, Wang L, Xiao B, Li F, Hofreiter M, Lai X, Westbury MV, and Sheng G
- Subjects
- Animals, Genome, Biological Evolution, Camelus genetics, Phylogeny
- Abstract
Extant Old World camels (genus Camelus) contributed to the economic and cultural exchanges between the East and West for thousands of years.
1 , 2 Although many remains have been unearthed,3 , 4 , 5 we know neither whether the prevalent hybridization observed between extant Camelus species2 , 6 , 7 also occurred between extinct lineages and the ancestors of extant Camelus species nor why some populations became extinct while others survived. To investigate these questions, we generated paleogenomic and stable isotope data from an extinct two-humped camel species, Camelus knoblochi. We find that in the mitochondrial phylogeny, all C. knoblochi form a paraphyletic group that nests within the diversity of modern, wild two-humped camels (Camelus ferus). In contrast, they are clearly distinguished from both wild and domesticated (Camelus bactrianus) two-humped camels on the nuclear level. Moreover, the divergence pattern of the three camel species approximates a trifurcation, because the most common topology is only slightly more frequent than the two other possible topologies. This mito-nuclear phylogenetic discordance likely arose due to interspecific gene flow between all three species, suggesting that interspecific hybridization is not exclusive to modern camels but a recurrent phenomenon throughout the evolutionary history of the genus Camelus. These results suggest that the genomic complexity of Old World camels' evolutionary history is underestimated when considering data from only modern species. Finally, we find that C. knoblochi populations began declining prior to the last glacial maximum and, by integrating palaeoecological evidence and stable isotope data, suggest that this was likely due to failure to adapt to a changing environment., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2024 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
6. Colonial-driven extinction of the blue antelope despite genomic adaptation to low population size.
- Author
-
Hempel E, Faith JT, Preick M, de Jager D, Barish S, Hartmann S, Grau JH, Moodley Y, Gedman G, Pirovich KM, Bibi F, Kalthoff DC, Bocklandt S, Lamm B, Dalén L, Westbury MV, and Hofreiter M
- Subjects
- Animals, Genetic Variation, Gene Flow, Adaptation, Physiological genetics, Ecosystem, Genome, Extinction, Biological, Antelopes genetics, Antelopes physiology, Population Density
- Abstract
Low genomic diversity is generally indicative of small population size and is considered detrimental by decreasing long-term adaptability.
1 , 2 , 3 , 4 , 5 , 6 Moreover, small population size may promote gene flow with congeners and outbreeding depression.7 , 8 , 9 , 10 , 11 , 12 , 13 Here, we examine the connection between habitat availability, effective population size (Ne ), and extinction by generating a 40× nuclear genome from the extinct blue antelope (Hippotragus leucophaeus). Historically endemic to the relatively small Cape Floristic Region in southernmost Africa,14 , 15 populations were thought to have expanded and contracted across glacial-interglacial cycles, tracking suitable habitat.16 , 17 , 18 However, we found long-term low Ne , unaffected by glacial cycles, suggesting persistence with low genomic diversity for many millennia prior to extinction in ∼AD 1800. A lack of inbreeding, alongside high levels of genetic purging, suggests adaptation to this long-term low Ne and that human impacts during the colonial era (e.g., hunting and landscape transformation), rather than longer-term ecological processes, were central to its extinction. Phylogenomic analyses uncovered gene flow between roan (H. equinus) and blue antelope, as well as between roan and sable antelope (H. niger), approximately at the time of divergence of blue and sable antelope (∼1.9 Ma). Finally, we identified the LYST and ASIP genes as candidates for the eponymous bluish pelt color of the blue antelope. Our results revise numerous aspects of our understanding of the interplay between genomic diversity and evolutionary history and provide the resources for uncovering the genetic basis of this extinct species' unique traits., Competing Interests: Declaration of interests M.H. and L.D. are on the advisory board of Colossal Biosciences and hold stock options. S. Bocklandt, K.M.P., G.G., and S. Barish are employed by Colossal Biosciences or FormBio. B.L. is CEO of Colossal Biosciences., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
7. Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent.
- Author
-
Reuber VM, Westbury MV, Rey-Iglesia A, Asefa A, Farwig N, Miehe G, Opgenoorth L, Šumbera R, Wraase L, Wube T, Lorenzen ED, and Schabo DG
- Subjects
- Animals, Ethiopia, Gene Flow, Microsatellite Repeats, Genetic Variation genetics, Genetics, Population, Ecosystem, Rodentia genetics
- Abstract
Due to their limited dispersal ability, fossorial species with predominantly belowground activity usually show increased levels of population subdivision across relatively small spatial scales. This may be exacerbated in harsh mountain ecosystems, where landscape geomorphology limits species' dispersal ability and leads to small effective population sizes, making species relatively vulnerable to environmental change. To better understand the environmental drivers of species' population subdivision in remote mountain ecosystems, particularly in understudied high-elevation systems in Africa, we studied the giant root-rat (Tachyoryctes macrocephalus), a fossorial rodent confined to the afro-alpine ecosystem of the Bale Mountains in Ethiopia. Using mitochondrial and low-coverage nuclear genomes, we investigated 77 giant root-rat individuals sampled from nine localities across its entire ~1000 km
2 range. Our data revealed a distinct division into a northern and southern group, with no signs of gene flow, and higher nuclear genetic diversity in the south. Landscape genetic analyses of the mitochondrial and nuclear genomes indicated that population subdivision was driven by slope and elevation differences of up to 500 m across escarpments separating the north and south, potentially reinforced by glaciation of the south during the Late Pleistocene (~42,000-16,000 years ago). Despite this landscape-scale subdivision between the north and south, weak geographic structuring of sampling localities within regions indicated gene flow across distances of at least 16 km at the local scale, suggesting high, aboveground mobility for relatively long distances. Our study highlights that despite the potential for local-scale gene flow in fossorial species, topographic barriers can result in pronounced genetic subdivision. These factors can reduce genetic variability, which should be considered when developing conservation strategies., (© 2024 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
8. The origins and diversification of Holarctic brown bear populations inferred from genomes of past and present populations.
- Author
-
Segawa T, Rey-Iglesia A, Lorenzen ED, and Westbury MV
- Subjects
- Humans, Animals, Genomics, Biological Evolution, DNA, Mitochondrial, Japan, Ursidae
- Abstract
The brown bear ( Ursus arctos ) is one of the survivors of the Late Quaternary megafauna extinctions. However, despite being widely distributed across the Holarctic, brown bears have experienced extensive range reductions, and even extirpations in some geographical regions. Previous research efforts using genetic data have provided valuable insights into their evolutionary history. However, most studies have been limited to contemporary individuals or mitochondrial DNA, limiting insights into population processes that preceded the present. Here, we present genomic data from two Late Pleistocene brown bears from Honshu, Japan and eastern Siberia, and combine them with published contemporary and ancient genomes from across the Holarctic range of brown bears to investigate the evolutionary relationships among brown bear populations through time and space. By including genomic data from Late Pleistocene and Holocene individuals sampled outside the current distribution range, we uncover diversity not present in contemporary populations. Notably, although contemporary individuals display geographically structured populations most likely driven by isolation-by-distance, this pattern varies among the ancient samples across different regions. The inclusion of ancient brown bears in our analysis provides novel insights into the evolutionary history of brown bears and contributes to understanding the populations and diversity lost during the Late Quaternary.
- Published
- 2024
- Full Text
- View/download PDF
9. Impact of Holocene environmental change on the evolutionary ecology of an Arctic top predator.
- Author
-
Westbury MV, Brown SC, Lorenzen J, O'Neill S, Scott MB, McCuaig J, Cheung C, Armstrong E, Valdes PJ, Samaniego Castruita JA, Cabrera AA, Blom SK, Dietz R, Sonne C, Louis M, Galatius A, Fordham DA, Ribeiro S, Szpak P, and Lorenzen ED
- Subjects
- Animals, Ecosystem, Climate Change, Biological Evolution, Arctic Regions, Ice Cover, Ursidae
- Abstract
The Arctic is among the most climatically sensitive environments on Earth, and the disappearance of multiyear sea ice in the Arctic Ocean is predicted within decades. As apex predators, polar bears are sentinel species for addressing the impact of environmental variability on Arctic marine ecosystems. By integrating genomics, isotopic analysis, morphometrics, and ecological modeling, we investigate how Holocene environmental changes affected polar bears around Greenland. We uncover reductions in effective population size coinciding with increases in annual mean sea surface temperature, reduction in sea ice cover, declines in suitable habitat, and shifts in suitable habitat northward. Furthermore, we show that west and east Greenlandic polar bears are morphologically, and ecologically distinct, putatively driven by regional biotic and genetic differences. Together, we provide insights into the vulnerability of polar bears to environmental change and how the Arctic marine ecosystem plays a vital role in shaping the evolutionary and ecological trajectories of its inhabitants.
- Published
- 2023
- Full Text
- View/download PDF
10. Ancient mitogenomes reveal a high maternal genetic diversity of Pleistocene woolly rhinoceros in Northern China.
- Author
-
Yuan J, Sun G, Xiao B, Hu J, Wang L, Taogetongqimuge, Bao L, Hou Y, Song S, Jiang S, Wu Y, Pan D, Liu Y, Westbury MV, Lai X, and Sheng G
- Subjects
- Humans, Animals, Phylogeny, Bayes Theorem, Perissodactyla genetics, Genetic Variation genetics, Genome, Mitochondrial genetics
- Abstract
Background: Woolly rhinoceros (Coelodonta antiquitatis) is a typical indicator of cold-stage climate that was widely distributed in Northern Hemisphere during the Middle-Late Pleistocene. Although a plethora of fossils have been excavated from Northern China, their phylogenetic status, intraspecific diversity and phylogeographical structure are still vague., Results: In the present study, we generated four mitogenomes from Late Pleistocene woolly rhinoceros in Northern China and compared them with published data. Bayesian and network analyses indicate that the analyzed individuals contain at least four maternal haplogroups, and Chinese samples fall in three of them. One of our samples belongs to a previously unidentified early diverging clade (haplogroup D), which separated from other woolly rhinoceros around 0.57 Ma (95% CI: 0.76-0.41 Ma). The timing of this clade's origin coincides with the first occurrence of woolly rhinoceros, which are thought to have evolved in Europe. Our other three samples cluster in haplogroup C, previously only identified from one specimen from Wrangel Island (ND030) and initially considered to be an isolated clade. Herein, our findings suggest that ND030 is likely descended from a northward dispersal of the individuals carrying haplogroup C from Northern China. Additionally, Chinese woolly rhinoceros specimens exhibit higher nucleotide diversity than those from Siberia., Conclusion: Our findings highlight Northern China as a possible refugium and a key evolution center of the Pleistocene woolly rhinoceros., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
11. A genomic assessment of the marine-speciation paradox within the toothed whale superfamily Delphinoidea.
- Author
-
Westbury MV, Cabrera AA, Rey-Iglesia A, De Cahsan B, Duchêne DA, Hartmann S, and Lorenzen ED
- Subjects
- Animals, Phylogeny, Gene Flow, Hybridization, Genetic, Whales genetics, Genetic Speciation, Genome genetics, Genomics
- Abstract
The impact of post-divergence gene flow in speciation has been documented across a range of taxa in recent years, and may have been especially widespread in highly mobile, wide-ranging marine species, such as cetaceans. Here, we studied individual genomes from nine species across the three families of the toothed whale superfamily Delphinoidea (Delphinidae, Phocoenidae and Monodontidae). To investigate the role of post-divergence gene flow in the speciation process, we used a multifaceted approach, including (i) phylogenomics, (ii) the distribution of shared derived alleles and (iii) demographic inference. We found the divergence of lineages within Delphinoidea did not follow a process of pure bifurcation, but was much more complex. Sliding-window phylogenomics reveal a high prevalence of discordant topologies within the superfamily, with further analyses indicating these discordances arose due to both incomplete lineage sorting and gene flow. D-statistics and f-branch analyses supported gene flow between members of Delphinoidea, with the vast majority of gene flow occurring as ancient interfamilial events. Demographic analyses provided evidence that introgressive gene flow has likely ceased between all species pairs tested, despite reports of contemporary interspecific hybrids. Our study provides the first steps towards resolving the large complexity of speciation within Delphinoidea; we reveal the prevalence of ancient interfamilial gene flow events prior to the diversification of each family, and suggest that contemporary hybridisation events may be disadvantageous, as hybrid individuals do not appear to contribute to the parental species' gene pools., (© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
12. Historic Sampling of a Vanishing Beast: Population Structure and Diversity in the Black Rhinoceros.
- Author
-
Sánchez-Barreiro F, De Cahsan B, Westbury MV, Sun X, Margaryan A, Fontsere C, Bruford MW, Russo IM, Kalthoff DC, Sicheritz-Pontén T, Petersen B, Dalén L, Zhang G, Marquès-Bonet T, Gilbert MTP, and Moodley Y
- Subjects
- Animals, Africa, Eastern, Africa South of the Sahara, Endangered Species, Biological Evolution, Perissodactyla genetics
- Abstract
The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north-south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
13. Blue Turns to Gray: Paleogenomic Insights into the Evolutionary History and Extinction of the Blue Antelope (Hippotragus leucophaeus).
- Author
-
Hempel E, Bibi F, Faith JT, Koepfli KP, Klittich AM, Duchêne DA, Brink JS, Kalthoff DC, Dalén L, Hofreiter M, and Westbury MV
- Subjects
- Animals, Humans, Biological Evolution, Phylogeny, Genome, Antelopes genetics, Mustelidae genetics
- Abstract
The blue antelope (Hippotragus leucophaeus) is the only large African mammal species to have become extinct in historical times, yet no nuclear genomic information is available for this species. A recent study showed that many alleged blue antelope museum specimens are either roan (Hippotragus equinus) or sable (Hippotragus niger) antelopes, further reducing the possibilities for obtaining genomic information for this extinct species. While the blue antelope has a rich fossil record from South Africa, climatic conditions in the region are generally unfavorable to the preservation of ancient DNA. Nevertheless, we recovered two blue antelope draft genomes, one at 3.4× mean coverage from a historical specimen (∼200 years old) and one at 2.1× mean coverage from a fossil specimen dating to 9,800-9,300 cal years BP, making it currently the oldest paleogenome from Africa. Phylogenomic analyses show that blue and sable antelope are sister species, confirming previous mitogenomic results, and demonstrate ancient gene flow from roan into blue antelope. We show that blue antelope genomic diversity was much lower than in roan and sable antelope, indicative of a low population size since at least the early Holocene. This supports observations from the fossil record documenting major decreases in the abundance of blue antelope after the Pleistocene-Holocene transition. Finally, the persistence of this species throughout the Holocene despite low population size suggests that colonial-era human impact was likely the decisive factor in the blue antelope's extinction., (© The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2022
- Full Text
- View/download PDF
14. Genomic insights into the evolutionary relationships and demographic history of kiwi.
- Author
-
Westbury MV, De Cahsan B, Shepherd LD, Holdaway RN, Duchene DA, and Lorenzen ED
- Subjects
- Animals, Demography, Genomics, Phylogeny, Palaeognathae genetics, Struthioniformes
- Abstract
Kiwi are a unique and emblematic group of birds endemic to New Zealand. Deep-time evolutionary relationships among the five extant kiwi species have been difficult to resolve, in part due to the absence of pre-Quaternary fossils to inform speciation events. Here, we utilise single representative nuclear genomes of all five extant kiwi species (great spotted kiwi, little spotted kiwi, Okarito brown kiwi, North Island brown kiwi, and southern brown kiwi) and investigate their evolutionary histories with phylogenomic, genetic diversity, and deep-time (past million years) demographic analyses. We uncover relatively low levels of gene-tree phylogenetic discordance across the genomes, suggesting clear distinction between species. However, we also find indications of post-divergence gene flow, concordant with recent reports of interspecific hybrids. The four species for which unbiased levels of genetic diversity could be calculated, due to the availability of reference assemblies (all species except the southern brown kiwi), show relatively low levels of genetic diversity, which we suggest reflects a combination of older environmental as well as more recent anthropogenic influence. In addition, we suggest hypotheses regarding the impact of known past environmental events, such as volcanic eruptions and glacial periods, on the similarities and differences observed in the demographic histories of the five kiwi species over the past million years., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
15. How low can you go? Introducing SeXY: sex identification from low-quantity sequencing data despite lacking assembled sex chromosomes.
- Author
-
Cabrera AA, Rey-Iglesia A, Louis M, Skovrind M, Westbury MV, and Lorenzen ED
- Abstract
Accurate sex identification is crucial for elucidating the biology of a species. In the absence of directly observable sexual characteristics, sex identification of wild fauna can be challenging, if not impossible. Molecular sexing offers a powerful alternative to morphological sexing approaches. Here, we present SeXY, a novel sex-identification pipeline, for very low-coverage shotgun sequencing data from a single individual. SeXY was designed to utilize low-effort screening data for sex identification and does not require a conspecific sex-chromosome assembly as reference. We assess the accuracy of our pipeline to data quantity by downsampling sequencing data from 100,000 to 1000 mapped reads and to reference genome selection by mapping to a variety of reference genomes of various qualities and phylogenetic distance. We show that our method is 100% accurate when mapping to a high-quality (highly contiguous N50 > 30 Mb) conspecific genome, even down to 1000 mapped reads. For lower-quality reference assemblies (N50 < 30 Mb), our method is 100% accurate with 50,000 mapped reads, regardless of reference assembly quality or phylogenetic distance. The SeXY pipeline provides several advantages over previously implemented methods; SeXY (i) requires sequencing data from only a single individual, (ii) does not require assembled conspecific sex chromosomes, or even a conspecific reference assembly, (iii) takes into account variation in coverage across the genome, and (iv) is accurate with only 1000 mapped reads in many cases., Competing Interests: The authors do not have any conflict of interest to disclose., (© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
16. An extinct and deeply divergent tiger lineage from northeastern China recognized through palaeogenomics.
- Author
-
Hu J, Westbury MV, Yuan J, Wang C, Xiao B, Chen S, Song S, Wang L, Lin H, Lai X, and Sheng G
- Subjects
- Animals, China, Phylogeny, Tigers genetics
- Abstract
Tigers ( Panthera tigris ) are flagship big cats and attract extensive public attention due to their charismatic features and endangered status. Despite this, little is known about their prehistoric lineages and detailed evolutionary histories. Through palaeogenomic analyses, we identified a Pleistocene tiger from northeastern China, dated to beyond the limits of radiocarbon dating (greater than 43 500 years ago). We used a simulated dataset and different reads processing pipelines to test the validity of our results and confirmed that, in both mitochondrial and nuclear phylogenies, this ancient individual belongs to a previously unknown lineage that diverged prior to modern tiger diversification. Based on the mitochondrial genome, the divergence time of this ancient lineage was estimated to be approximately 268 ka (95% CI: 187-353 ka), doubling the known age of tigers' maternal ancestor to around 125 ka (95% CI: 88-168 ka). Furthermore, by combining our findings with putative mechanisms underlying the discordant mito-nuclear phylogenetic placement for the South China tigers, we proposed a more complex scenario of tiger evolution that would otherwise be missed using data from modern tigers only. Our study provides the first glimpses of the genetic antiquity of tigers and demonstrates the utility of aDNA-based investigation for further understanding tiger evolution.
- Published
- 2022
- Full Text
- View/download PDF
17. Grey wolf genomic history reveals a dual ancestry of dogs.
- Author
-
Bergström A, Stanton DWG, Taron UH, Frantz L, Sinding MS, Ersmark E, Pfrengle S, Cassatt-Johnstone M, Lebrasseur O, Girdland-Flink L, Fernandes DM, Ollivier M, Speidel L, Gopalakrishnan S, Westbury MV, Ramos-Madrigal J, Feuerborn TR, Reiter E, Gretzinger J, Münzel SC, Swali P, Conard NJ, Carøe C, Haile J, Linderholm A, Androsov S, Barnes I, Baumann C, Benecke N, Bocherens H, Brace S, Carden RF, Drucker DG, Fedorov S, Gasparik M, Germonpré M, Grigoriev S, Groves P, Hertwig ST, Ivanova VV, Janssens L, Jennings RP, Kasparov AK, Kirillova IV, Kurmaniyazov I, Kuzmin YV, Kosintsev PA, Lázničková-Galetová M, Leduc C, Nikolskiy P, Nussbaumer M, O'Drisceoil C, Orlando L, Outram A, Pavlova EY, Perri AR, Pilot M, Pitulko VV, Plotnikov VV, Protopopov AV, Rehazek A, Sablin M, Seguin-Orlando A, Storå J, Verjux C, Zaibert VF, Zazula G, Crombé P, Hansen AJ, Willerslev E, Leonard JA, Götherström A, Pinhasi R, Schuenemann VJ, Hofreiter M, Gilbert MTP, Shapiro B, Larson G, Krause J, Dalén L, and Skoglund P
- Subjects
- Africa, Animals, DNA, Ancient analysis, Domestication, Europe, History, Ancient, Middle East, Mutation, North America, Selection, Genetic, Siberia, Tumor Suppressor Proteins genetics, Dogs genetics, Genome genetics, Genomics, Phylogeny, Wolves classification, Wolves genetics
- Abstract
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived
1-8 . Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
18. High genomic diversity in the endangered East Greenland Svalbard Barents Sea stock of bowhead whales (Balaena mysticetus).
- Author
-
Cerca J, Westbury MV, Heide-Jørgensen MP, Kovacs KM, Lorenzen ED, Lydersen C, Shpak OV, Wiig Ø, and Bachmann L
- Subjects
- Animals, Svalbard, Bowhead Whale genetics
- Abstract
The East Greenland-Svalbard-Barents Sea (EGSB) bowhead whale stock (Balaena mysticetus) was hunted to near extinction and remains Endangered on the International Union of Conservation of Nature Red List. The intense, temporally extensive hunting pressure may have left the population vulnerable to other perturbations, such as environmental change. However, the lack of genomic baseline data renders it difficult to evaluate the impacts of various potential stressors on this stock. Twelve EGSB bowhead whales sampled in 2017/2018 were re-sequenced and mapped to a previously published draft genome. All individuals were unrelated and void of significant signs of inbreeding, with similar observed and expected homo- and heterozygosity levels. Despite the small population size, mean autosome-wide heterozygosity was 0.00102, which is higher than that of most mammals for which comparable estimates are calculated using the same parameters, and three times higher than a conspecific individual from the Eastern-Canada-West-Greenland bowhead whale stock. Demographic history analyses indicated a continual decrease of N
e from ca. 1.5 million to ca. 250,000 years ago, followed by a slight increase until ca. 100,000 years ago, followed by a rapid decrease in Ne between 50,000 and 10,000 years ago. These estimates are lower than previously suggested based on mitochondrial DNA, but suggested demographic patterns over time are similar., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
19. Ancient Mitogenomes Suggest Stable Mitochondrial Clades of the Siberian Roe Deer.
- Author
-
Deng MX, Xiao B, Yuan JX, Hu JM, Kim KS, Westbury MV, Lai XL, and Sheng GL
- Subjects
- Animals, Bayes Theorem, DNA, Mitochondrial analysis, Fossils, Haplotypes, DNA, Mitochondrial genetics, Deer genetics, Evolution, Molecular, Genetic Variation, Genome, Mitochondrial, Mitochondria genetics, Phylogeny
- Abstract
The roe deer ( Capreolus spp.) has been present in China since the early Pleistocene. Despite abundant fossils available for detailed morphological analyses, little is known about the phylogenetic relationships of the fossil individuals to contemporary roe deer. We generated near-complete mitochondrial genomes for four roe deer remains from Northeastern China to explore the genetic connection of the ancient roe deer to the extant populations and to investigate the evolutionary history and population dynamics of this species. Phylogenetic analyses indicated the four ancient samples fall into three out of four different haplogroups of the Siberian roe deer. Haplogroup C, distributed throughout Eurasia, have existed in Northeastern China since at least the Late Pleistocene, while haplogroup A and D, found in the east of Lake Baikal, emerged in Northeastern China after the Mid Holocene. The Bayesian estimation suggested that the first split within the Siberian roe deer occurred approximately 0.34 million years ago (Ma). Moreover, Bayesian skyline plot analyses suggested that the Siberian roe deer had a population increase between 325 and 225 thousand years ago (Kya) and suffered a transient decline between 50 and 18 Kya. This study provides novel insights into the evolutionary history and population dynamics of the roe deer.
- Published
- 2022
- Full Text
- View/download PDF
20. Evaluating the role of reference-genome phylogenetic distance on evolutionary inference.
- Author
-
Prasad A, Lorenzen ED, and Westbury MV
- Subjects
- Phylogeny
- Abstract
When a high-quality genome assembly of a target species is unavailable, an option to avoid the costly de novo assembly process is a mapping-based assembly. However, mapping shotgun data to a distant relative may lead to biased or erroneous evolutionary inference. Here, we used short-read data from a mammal (beluga whale) and a bird species (rowi kiwi) to evaluate whether reference genome phylogenetic distance can impact downstream demographic (Pairwise Sequentially Markovian Coalescent) and genetic diversity (heterozygosity, runs of homozygosity) analyses. We mapped to assemblies of species of varying phylogenetic distance (from conspecific to genome-wide divergence of >7%), and de novo assemblies created using cross-species scaffolding. We show that while reference genome phylogenetic distance has an impact on demographic analyses, it is not pronounced until using a reference genome with >3% divergence from the target species. When mapping to cross-species scaffolded assemblies, we are unable to replicate the original beluga demographic results, but are able with the rowi kiwi, presumably reflecting the more fragmented nature of the beluga assemblies. We find that increased phylogenetic distance has a pronounced impact on genetic diversity estimates; heterozygosity estimates deviate incrementally with increasing phylogenetic distance. Moreover, runs of homozygosity are largely undetectable when mapping to any nonconspecific assembly. However, these biases can be reduced when mapping to a cross-species scaffolded assembly. Taken together, our results show that caution should be exercised when selecting reference genomes. Cross-species scaffolding may offer a way to avoid a costly, traditional de novo assembly, while still producing robust, evolutionary inference., (© 2021 John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
21. Historical population declines prompted significant genomic erosion in the northern and southern white rhinoceros (Ceratotherium simum).
- Author
-
Sánchez-Barreiro F, Gopalakrishnan S, Ramos-Madrigal J, Westbury MV, de Manuel M, Margaryan A, Ciucani MM, Vieira FG, Patramanis Y, Kalthoff DC, Timmons Z, Sicheritz-Pontén T, Dalén L, Ryder OA, Zhang G, Marquès-Bonet T, Moodley Y, and Gilbert MTP
- Subjects
- Animals, Genomics, Inbreeding, Anthropogenic Effects, Perissodactyla genetics
- Abstract
Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses., (© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
22. A sliver of the past: The decimation of the genetic diversity of the Mexican wolf.
- Author
-
Taron UH, Salado I, Escobar-Rodríguez M, Westbury MV, Butschkau S, Paijmans JLA, vonHoldt BM, Hofreiter M, and Leonard JA
- Subjects
- Animals, Genetic Variation, Genome, Mexico, Coyotes genetics, Wolves genetics
- Abstract
The endangered Mexican wolf (Canis lupus baileyi) is known to carry exceedingly low levels of genetic diversity. This could be (i) the result of long-term evolutionary patterns as they exist at the southernmost limit of the species distribution at a relatively reduced effective size, or (ii) due to rapid population decline caused by human persecution over the last century. If the former, purifying selection is expected to have minimized the impact of inbreeding. If the latter, rapid and recent declines in genetic diversity may have resulted in severe fitness consequences. To differentiate these hypotheses, we conducted comparative whole-genome analyses of five historical Mexican wolves (1907-1917) and 18 contemporary Mexican and grey wolves from North America and Eurasia. Based on whole-genome data, historical and modern Mexican wolves together form a discrete unit. Moreover, we found that modern Mexican wolves have reduced genetic diversity and increased inbreeding relative to the historical population, which was widespread across the southwestern United States and not restricted to Mexico as previously assumed. Finally, although Mexican wolves have evolved in sympatry with coyotes (C. latrans), we observed lower introgression between historical Mexican wolves and coyotes than with modern Mexican wolves, despite similarities in body size. Taken together, our data show that recent population declines probably caused the reduced level of genetic diversity, but not the observed differentiation of the Mexican wolves from other North American wolves., (© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
23. Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens.
- Author
-
Straube N, Lyra ML, Paijmans JLA, Preick M, Basler N, Penner J, Rödel MO, Westbury MV, Haddad CFB, Barlow A, and Hofreiter M
- Subjects
- DNA, Mitochondrial genetics, Sequence Analysis, DNA, Specimen Handling, DNA, Ancient, Museums
- Abstract
Millions of scientific specimens are housed in museum collections, a large part of which are fluid preserved. The use of formaldehyde as fixative and subsequent storage in ethanol is especially common in ichthyology and herpetology. This type of preservation damages DNA and reduces the chance of successful retrieval of genetic data. We applied ancient DNA extraction and single stranded library construction protocols to a variety of vertebrate samples obtained from wet collections and of different ages. Our results show that almost all samples tested yielded endogenous DNA. Archival DNA extraction was successful across different tissue types as well as using small amounts of tissue. Conversion of archival DNA fragments into single-stranded libraries resulted in usable data even for samples with initially undetectable DNA amounts. Subsequent target capture approaches for mitochondrial DNA using homemade baits on a subset of 30 samples resulted in almost complete mitochondrial genome sequences in several instances. Thus, application of ancient DNA methodology makes wet collection specimens, including type material as well as rare, old or extinct species, accessible for genetic and genomic analyses. Our results, accompanied by detailed step-by-step protocols, are a large step forward to open the DNA archive of museum wet collections for scientific studies., (© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
24. Ancient and modern genomes unravel the evolutionary history of the rhinoceros family.
- Author
-
Liu S, Westbury MV, Dussex N, Mitchell KJ, Sinding MS, Heintzman PD, Duchêne DA, Kapp JD, von Seth J, Heiniger H, Sánchez-Barreiro F, Margaryan A, André-Olsen R, De Cahsan B, Meng G, Yang C, Chen L, van der Valk T, Moodley Y, Rookmaaker K, Bruford MW, Ryder O, Steiner C, Bruins-van Sonsbeek LGR, Vartanyan S, Guo C, Cooper A, Kosintsev P, Kirillova I, Lister AM, Marques-Bonet T, Gopalakrishnan S, Dunn RR, Lorenzen ED, Shapiro B, Zhang G, Antoine PO, Dalén L, and Gilbert MTP
- Subjects
- Animals, Demography, Gene Flow, Genetic Variation, Geography, Heterozygote, Homozygote, Host Specificity, Markov Chains, Mutation genetics, Phylogeny, Species Specificity, Time Factors, Evolution, Molecular, Genome, Perissodactyla genetics
- Abstract
Only five species of the once-diverse Rhinocerotidae remain, making the reconstruction of their evolutionary history a challenge to biologists since Darwin. We sequenced genomes from five rhinoceros species (three extinct and two living), which we compared to existing data from the remaining three living species and a range of outgroups. We identify an early divergence between extant African and Eurasian lineages, resolving a key debate regarding the phylogeny of extant rhinoceroses. This early Miocene (∼16 million years ago [mya]) split post-dates the land bridge formation between the Afro-Arabian and Eurasian landmasses. Our analyses also show that while rhinoceros genomes in general exhibit low levels of genome-wide diversity, heterozygosity is lowest and inbreeding is highest in the modern species. These results suggest that while low genetic diversity is a long-term feature of the family, it has been particularly exacerbated recently, likely reflecting recent anthropogenic-driven population declines., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
25. Ecological Specialization and Evolutionary Reticulation in Extant Hyaenidae.
- Author
-
Westbury MV, Le Duc D, Duchêne DA, Krishnan A, Prost S, Rutschmann S, Grau JH, Dalén L, Weyrich A, Norén K, Werdelin L, Dalerum F, Schöneberg T, and Hofreiter M
- Subjects
- Animals, Feeding Behavior, Genome, Male, Population Density, Adaptation, Biological, Biological Evolution, Gene Flow, Genetic Variation, Hyaenidae genetics
- Abstract
During the Miocene, Hyaenidae was a highly diverse family of Carnivora that has since been severely reduced to four species: the bone-cracking spotted, striped, and brown hyenas, and the specialized insectivorous aardwolf. Previous studies investigated the evolutionary histories of the spotted and brown hyenas, but little is known about the remaining two species. Moreover, the genomic underpinnings of scavenging and insectivory, defining traits of the extant species, remain elusive. Here, we generated an aardwolf genome and analyzed it together with the remaining three species to reveal their evolutionary relationships, genomic underpinnings of their scavenging and insectivorous lifestyles, and their respective genetic diversities and demographic histories. High levels of phylogenetic discordance suggest gene flow between the aardwolf lineage and the ancestral brown/striped hyena lineage. Genes related to immunity and digestion in the bone-cracking hyenas and craniofacial development in the aardwolf showed the strongest signals of selection, suggesting putative key adaptations to carrion and termite feeding, respectively. A family-wide expansion in olfactory receptor genes suggests that an acute sense of smell was a key early adaptation. Finally, we report very low levels of genetic diversity within the brown and striped hyenas despite no signs of inbreeding, putatively linked to their similarly slow decline in effective population size over the last ∼2 million years. High levels of genetic diversity and more stable population sizes through time are seen in the spotted hyena and aardwolf. Taken together, our findings highlight how ecological specialization can impact the evolutionary history, demographics, and adaptive genetic changes of an evolutionary lineage., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2021
- Full Text
- View/download PDF
26. Diversity and Paleodemography of the Addax ( Addax nasomaculatus ), a Saharan Antelope on the Verge of Extinction.
- Author
-
Hempel E, Westbury MV, Grau JH, Trinks A, Paijmans JLA, Kliver S, Barlow A, Mayer F, Müller J, Chen L, Koepfli KP, Hofreiter M, and Bibi F
- Subjects
- Animals, Antelopes genetics, Biodiversity, Genome, Mitochondrial, Hybridization, Genetic, Phylogeography, Antelopes classification, Endangered Species, Extinction, Biological
- Abstract
Since the 19th century, the addax ( Addax nasomaculatus ) has lost approximately 99% of its former range. Along with its close relatives, the blue antelope ( Hippotragus leucophaeus ) and the scimitar-horned oryx ( Oryx dammah ), the addax may be the third large African mammal species to go extinct in the wild in recent times. Despite this, the evolutionary history of this critically endangered species remains virtually unknown. To gain insight into the population history of the addax, we used hybridization capture to generate ten complete mitochondrial genomes from historical samples and assembled a nuclear genome. We found that both mitochondrial and nuclear diversity are low compared to other African bovids. Analysis of mitochondrial genomes revealed a most recent common ancestor ~32 kya (95% CI 11-58 kya) and weak phylogeographic structure, indicating that the addax likely existed as a highly mobile, panmictic population across its Sahelo-Saharan range in the past. PSMC analysis revealed a continuous decline in effective population size since ~2 Ma, with short intermediate increases at ~500 and ~44 kya. Our results suggest that the addax went through a major bottleneck in the Late Pleistocene, remaining at low population size prior to the human disturbances of the last few centuries.
- Published
- 2021
- Full Text
- View/download PDF
27. Complete mitochondrial genome of the giant root-rat ( Tachyoryctes macrocephalus ).
- Author
-
Reuber VM, Rey-Iglesia A, Westbury MV, Cabrera AA, Farwig N, Skovrind M, Šumbera R, Wube T, Opgenoorth L, Schabo DG, and Lorenzen ED
- Abstract
The endangered giant root-rat ( Tachyoryctes macrocephalus , also known as giant mole rat) is a fossorial rodent endemic to the afro-alpine grasslands of the Bale Mountains in Ethiopia. The species is an important ecosystem engineer with the majority of the global population found within 1000 km
2 . Here, we present the first complete mitochondrial genome of the giant root-rat and the genus Tachyoryctes , recovered using shotgun sequencing and iterative mapping. A phylogenetic analysis including 15 other representatives of the family Spalacidae placed Tachyoryctes as sister genus to Rhizomys with high support. This position is in accordance with a recent study revealing the topology of the Spalacidae family. The full mitochondrial genome of the giant root-rat presents an important resource for further population genetic studies., Competing Interests: We would like to report no potential conflicts of interest., (© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.)- Published
- 2021
- Full Text
- View/download PDF
28. Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad.
- Author
-
De Cahsan B, Kiemel K, Westbury MV, Lauritsen M, Autenrieth M, Gollmann G, Schweiger S, Stenberg M, Nyström P, Drews H, and Tiedemann R
- Abstract
Northern range margin populations of the European fire-bellied toad ( Bombina bombina ) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Skåne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation., Competing Interests: The authors declare no conflict of interest., (© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
29. A genomic exploration of the early evolution of extant cats and their sabre-toothed relatives.
- Author
-
Westbury MV, Barnett R, Sandoval-Velasco M, Gower G, Vieira FG, de Manuel M, Hansen AJ, Yamaguchi N, Werdelin L, Marques-Bonet T, Gilbert MTP, and Lorenzen ED
- Abstract
Background: The evolutionary relationships of Felidae during their Early-Middle Miocene radiation is contentious. Although the early common ancestors have been subsumed under the grade-group Pseudaelurus, this group is thought to be paraphyletic, including the early ancestors of both modern cats and extinct sabretooths. Methods: Here, we sequenced a draft nuclear genome of Smilodon populator, dated to 13,182 ± 90 cal BP, making this the oldest palaeogenome from South America to date, a region known to be problematic for ancient DNA preservation. We analysed this genome, together with genomes from other extinct and extant cats to investigate their phylogenetic relationships. Results: We confirm a deep divergence (~20.65 Ma) within sabre-toothed cats. Through the analysis of both simulated and empirical data, we show a lack of gene flow between Smilodon and contemporary Felidae. Conclusions: Given that some species traditionally assigned to Pseudaelurus originated in the Early Miocene ~20 Ma, this indicates that some species of Pseudaelurus may be younger than the lineages they purportedly gave rise to, further supporting the hypothesis that Pseudaelurus was paraphyletic., Competing Interests: No competing interests were disclosed., (Copyright: © 2021 Westbury MV et al.)
- Published
- 2021
- Full Text
- View/download PDF
30. Circumpolar phylogeography and demographic history of beluga whales reflect past climatic fluctuations.
- Author
-
Skovrind M, Louis M, Westbury MV, Garilao C, Kaschner K, Castruita JAS, Gopalakrishnan S, Knudsen SW, Haile JS, Dalén L, Meshchersky IG, Shpak OV, Glazov DM, Rozhnov VV, Litovka DI, Krasnova VV, Chernetsky AD, Bel'kovich VM, Lydersen C, Kovacs KM, Heide-Jørgensen MP, Postma L, Ferguson SH, and Lorenzen ED
- Subjects
- Animals, Arctic Regions, Demography, Ecosystem, Oceans and Seas, Pacific Ocean, Phylogeography, Beluga Whale genetics
- Abstract
Several Arctic marine mammal species are predicted to be negatively impacted by rapid sea ice loss associated with ongoing ocean warming. However, consequences for Arctic whales remain uncertain. To investigate how Arctic whales responded to past climatic fluctuations, we analysed 206 mitochondrial genomes from beluga whales (Delphinapterus leucas) sampled across their circumpolar range, and four nuclear genomes, covering both the Atlantic and the Pacific Arctic region. We found four well-differentiated mitochondrial lineages, which were established before the onset of the last glacial expansion ~110 thousand years ago. Our findings suggested these lineages diverged in allopatry, reflecting isolation of populations during glacial periods when the Arctic sea-shelf was covered by multiyear sea ice. Subsequent population expansion and secondary contact between the Atlantic and Pacific Oceans shaped the current geographic distribution of lineages, and may have facilitated mitochondrial introgression. Our demographic reconstructions based on both mitochondrial and nuclear genomes showed markedly lower population sizes during the Last Glacial Maximum (LGM) compared to the preceding Eemian and current Holocene interglacial periods. Habitat modelling similarly revealed less suitable habitat during the LGM (glacial) than at present (interglacial). Together, our findings suggested the association between climate, population size, and available habitat in belugas. Forecasts for year 2100 showed that beluga habitat will decrease and shift northwards as oceans continue to warm, putatively leading to population declines in some beluga populations. Finally, we identified vulnerable populations which, if extirpated as a consequence of ocean warming, will lead to a substantial decline of species-wide haplotype diversity., (© 2021 John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
31. African and Asian leopards are highly differentiated at the genomic level.
- Author
-
Paijmans JLA, Barlow A, Becker MS, Cahill JA, Fickel J, Förster DWG, Gries K, Hartmann S, Havmøller RW, Henneberger K, Kern C, Kitchener AC, Lorenzen ED, Mayer F, OBrien SJ, von Seth J, Sinding MS, Spong G, Uphyrkina O, Wachter B, Westbury MV, Dalén L, Bhak J, Manica A, and Hofreiter M
- Subjects
- Animals, Asia, Cats, Ecosystem, Genomics, Phylogeography, Panthera
- Abstract
Leopards are the only big cats still widely distributed across the continents of Africa and Asia. They occur in a wide range of habitats and are often found in close proximity to humans. But despite their ubiquity, leopard phylogeography and population history have not yet been studied with genomic tools. Here, we present population-genomic data from 26 modern and historical samples encompassing the vast geographical distribution of this species. We find that Asian leopards are broadly monophyletic with respect to African leopards across almost their entire nuclear genomes. This profound genetic pattern persists despite the animals' high potential mobility, and despite evidence of transfer of African alleles into Middle Eastern and Central Asian leopard populations within the last 100,000 years. Our results further suggest that Asian leopards originated from a single out-of-Africa dispersal event 500-600 thousand years ago and are characterized by higher population structuring, stronger isolation by distance, and lower heterozygosity than African leopards. Taxonomic categories do not take into account the variability in depth of divergence among subspecies. The deep divergence between the African subspecies and Asian populations contrasts with the much shallower divergence among putative Asian subspecies. Reconciling genomic variation and taxonomy is likely to be a growing challenge in the genomics era., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
32. Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian.
- Author
-
De Cahsan B, Westbury MV, Paraskevopoulou S, Drews H, Ott M, Gollmann G, and Tiedemann R
- Abstract
Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad ( Bombina bombina ) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany., Competing Interests: The authors declare that they have no conflict of interest., (© 2021 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
33. Ocean-wide genomic variation in Gray's beaked whales, Mesoplodon grayi .
- Author
-
Westbury MV, Thompson KF, Louis M, Cabrera AA, Skovrind M, Castruita JAS, Constantine R, Stevens JR, and Lorenzen ED
- Abstract
The deep oceans of the Southern Hemisphere are home to several elusive and poorly studied marine megafauna. In the absence of robust observational data for these species, genetic data can aid inferences on population connectivity, demography and ecology. A previous investigation of genetic diversity and population structure in Gray's beaked whale ( Mesoplodon grayi ) from Western Australia and New Zealand found high levels of mtDNA diversity, no geographic structure and stable demographic history. To further investigate phylogeographic and demographic patterns across their range, we generated complete mitochondrial and partial nuclear genomes of 16 of the individuals previously analysed and included additional samples from South Africa ( n = 2) and South Australia ( n = 4), greatly expanding the spatial range of genomic data for the species. Gray's beaked whales are highly elusive and rarely observed, and our data represents a unique and geographically broad dataset. We find relatively high levels of diversity in the mitochondrial genome, despite an absence of population structure at the mitochondrial and nuclear level. Demographic analyses suggest these whales existed at stable levels over at least the past 1.1 million years, with an approximately twofold increase in female effective population size approximately 250 thousand years ago, coinciding with a period of increased Southern Ocean productivity, sea surface temperature and a potential expansion of suitable habitat. Our results suggest that Gray's beaked whales are likely to be resilient to near-future ecosystem changes, facilitating their conservation. Our study demonstrates the utility of low-effort shotgun sequencing in providing ecological information on highly elusive species., (© 2021 The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
34. Ancient DNA reveals the lost domestication history of South American camelids in Northern Chile and across the Andes.
- Author
-
Diaz-Maroto P, Rey-Iglesia A, Cartajena I, Núñez L, Westbury MV, Varas V, Moraga M, Campos PF, Orozco-terWengel P, Marin JC, and Hansen AJ
- Subjects
- Animals, Animals, Domestic genetics, Animals, Wild genetics, Archaeology methods, Chile, DNA, Mitochondrial genetics, Genetic Variation, Genome, Mitochondrial, Hybridization, Genetic, Camelids, New World genetics, DNA, Ancient analysis, Domestication
- Abstract
The study of South American camelids and their domestication is a highly debated topic in zooarchaeology. Identifying the domestic species (alpaca and llama) in archaeological sites based solely on morphological data is challenging due to their similarity with respect to their wild ancestors. Using genetic methods also presents challenges due to the hybridization history of the domestic species, which are thought to have extensively hybridized following the Spanish conquest of South America that resulted in camelids slaughtered en masse. In this study, we generated mitochondrial genomes for 61 ancient South American camelids dated between 3,500 and 2,400 years before the present (Early Formative period) from two archaeological sites in Northern Chile (Tulán-54 and Tulán-85), as well as 66 modern camelid mitogenomes and 815 modern mitochondrial control region sequences from across South America. In addition, we performed osteometric analyses to differentiate big and small body size camelids. A comparative analysis of these data suggests that a substantial proportion of the ancient vicuña genetic variation has been lost since the Early Formative period, as it is not present in modern specimens. Moreover, we propose a domestication hypothesis that includes an ancient guanaco population that no longer exists. Finally, we find evidence that interbreeding practices were widespread during the domestication process by the early camelid herders in the Atacama during the Early Formative period and predating the Spanish conquest., Competing Interests: PD, AR, IC, LN, MW, VV, MM, PC, PO, JM, AH No competing interests declared, (© 2021, Diaz-Maroto et al.)
- Published
- 2021
- Full Text
- View/download PDF
35. Ancient mitochondrial genomes from Chinese cave hyenas provide insights into the evolutionary history of the genus Crocuta .
- Author
-
Hu J, Westbury MV, Yuan J, Zhang Z, Chen S, Xiao B, Hou X, Ji H, Lai X, Hofreiter M, and Sheng G
- Subjects
- Animals, Asia, Bayes Theorem, China, Female, Phylogeny, Genome, Mitochondrial, Hyaenidae genetics
- Abstract
Cave hyenas (genus Crocuta ) are extinct bone-cracking carnivores from the family Hyaenidae and are generally split into two taxa that correspond to a European/Eurasian and an (East) Asian lineage. They are close relatives of the extant African spotted hyenas, the only extant member of the genus Crocuta . Cave hyenas inhabited a wide range across Eurasia during the Pleistocene, but became extinct at the end of the Late Pleistocene. Using genetic and genomic datasets, previous studies have proposed different scenarios about the evolutionary history of Crocuta. However, causes of the extinction of cave hyenas are widely speculative and samples from China are severely understudied. In this study, we assembled near-complete mitochondrial genomes from two cave hyenas from northeastern China dating to 20 240 and 20 253 calBP, representing the youngest directly dated fossils of Crocuta in Asia. Phylogenetic analyses suggest a monophyletic clade of these two samples within a deeply diverging mitochondrial haplogroup of Crocuta . Bayesian analyses suggest that the split of this Asian cave hyena mitochondrial lineage from their European and African relatives occurred approximately 1.85 Ma (95% CI 1.62-2.09 Ma), which is broadly concordant with the earliest Eurasian Crocuta fossil dating to approximately 2 Ma. Comparisons of mean genetic distance indicate that cave hyenas harboured higher genetic diversity than extant spotted hyenas, brown hyenas and aardwolves, but this is probably at least partially due to the fact that their mitochondrial lineages do not represent a monophyletic group, although this is also true for extant spotted hyenas. Moreover, the joint female effective population size of Crocuta (both cave hyenas and extant spotted hyenas) has sustained two declines during the Late Pleistocene. Combining this mitochondrial phylogeny, previous nuclear findings and fossil records, we discuss the possible relationship of fossil Crocuta in China and the extinction of cave hyenas.
- Published
- 2021
- Full Text
- View/download PDF
36. Identifying the true number of specimens of the extinct blue antelope (Hippotragus leucophaeus).
- Author
-
Hempel E, Bibi F, Faith JT, Brink JS, Kalthoff DC, Kamminga P, Paijmans JLA, Westbury MV, Hofreiter M, and Zachos FE
- Subjects
- Animals, Antelopes classification, Antelopes physiology, Conservation of Natural Resources, DNA, Mitochondrial chemistry, DNA, Mitochondrial genetics, Genetic Variation, Museums, Phylogeny, Population Density, Population Dynamics, Sequence Analysis, DNA, South Africa, Species Specificity, Animal Distribution, Antelopes genetics, Extinction, Biological, Genome, Mitochondrial genetics
- Abstract
Native to southern Africa, the blue antelope (Hippotragus leucophaeus) is the only large African mammal species known to have become extinct in historical times. However, it was poorly documented prior to its extinction ~ 1800 AD, and many of the small number of museum specimens attributed to it are taxonomically contentious. This places limitations on our understanding of its morphology, ecology, and the mechanisms responsible for its demise. We retrieved genetic information from ten of the sixteen putative blue antelope museum specimens using both shotgun sequencing and mitochondrial genome target capture in an attempt to resolve the uncertainty surrounding the identification of these specimens. We found that only four of the ten investigated specimens, and not a single skull, represent the blue antelope. This indicates that the true number of historical museum specimens of the blue antelope is even smaller than previously thought, and therefore hardly any reference material is available for morphometric, comparative and genetic studies. Our study highlights how genetics can be used to identify rare species in natural history collections where other methods may fail or when records are scarce. Additionally, we present an improved mitochondrial reference genome for the blue antelope as well as one complete and two partial mitochondrial genomes. A first analysis of these mitochondrial genomes indicates low levels of maternal genetic diversity in the 'museum population', possibly confirming previous results that blue antelope population size was already low at the time of the European colonization of South Africa.
- Published
- 2021
- Full Text
- View/download PDF
37. Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens.
- Author
-
Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, Martin MD, Ho SYW, Mather N, Gopalakrishnan S, Ramos-Madrigal J, de Manuel M, Zepeda-Mendoza ML, Antunes A, Baez AC, De Cahsan B, Larson G, O'Brien SJ, Eizirik E, Johnson WE, Koepfli KP, Wilting A, Fickel J, Dalén L, Lorenzen ED, Marques-Bonet T, Hansen AJ, Zhang G, Bhak J, Yamaguchi N, and Gilbert MTP
- Subjects
- Animal Distribution, Animals, Cuspid, DNA, Ancient, Extinction, Biological, Felidae anatomy & histology, Fossils anatomy & histology, Genomics, Hybridization, Genetic, Phylogeny, Recombination, Genetic, Felidae genetics, Genetic Drift, Genetic Speciation
- Abstract
Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage., Competing Interests: Declaration of Interests The authors declare no competing interests., (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
38. Interspecific Gene Flow and the Evolution of Specialization in Black and White Rhinoceros.
- Author
-
Moodley Y, Westbury MV, Russo IM, Gopalakrishnan S, Rakotoarivelo A, Olsen RA, Prost S, Tunstall T, Ryder OA, Dalén L, and Bruford MW
- Subjects
- Animals, Feeding Behavior, Female, Genome, Male, Mutation Rate, Gene Flow, Perissodactyla genetics, Reproductive Isolation
- Abstract
Africa's black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros are closely related sister-taxa that evolved highly divergent obligate browsing and grazing feeding strategies. Although their precursor species Diceros praecox and Ceratotherium mauritanicum appear in the fossil record ∼5.2 Ma, by 4 Ma both were still mixed feeders, and were even spatiotemporally sympatric at several Pliocene sites in what is today Africa's Rift Valley. Here, we ask whether or not D. praecox and C. mauritanicum were reproductively isolated when they came into Pliocene secondary contact. We sequenced and de novo assembled the first annotated black rhinoceros reference genome and compared it with available genomes of other black and white rhinoceros. We show that ancestral gene flow between D. praecox and C. mauritanicum ceased sometime between 3.3 and 4.1 Ma, despite conventional methods for the detection of gene flow from whole genome data returning false positive signatures of recent interspecific migration due to incomplete lineage sorting. We propose that ongoing Pliocene genetic exchange, for up to 2 My after initial divergence, could have potentially hindered the development of obligate feeding strategies until both species were fully reproductively isolated, but that the more severe and shifting paleoclimate of the early Pleistocene was likely the ultimate driver of ecological specialization in African rhinoceros., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
39. Palaeoproteomic analysis of Pleistocene cave hyenas from east Asia.
- Author
-
Rao H, Yang Y, Liu J, Westbury MV, Zhang C, and Shao Q
- Subjects
- Animals, Asia, Eastern, Hyaenidae genetics, Proteomics, Biological Evolution, Fossils, Hyaenidae metabolism
- Abstract
The spotted hyena (Crocuta crocuta) is the only extant species of the genus Crocuta, which once occupied a much wider range during the Pliocene and Pleistocene. However, its origin and evolutionary history is somewhat contentious due to discordances between morphological, nuclear, and mitochondrial data. Due to the limited molecular data from east Asian Crocuta, also known as cave hyena, and the difficulty of extracting ancient DNA from this area, here we present proteomic analysis of cave hyenas from three locations in northern China. This marks the first proteomic data generated from cave hyenas, adding new molecular data to the east Asian populations. Phylogenetic analysis based on these protein sequences reveals two different groups of cave hyenas in east Asia, one of which could not be distinguished from modern spotted hyenas from northern Africa, tentatively the result of previously suggested gene flow between these lineages. With developments of instrumentation and analytical methods, proteomics holds promising potential for molecular phylogenetic reconstructions of ancient fauna previously thought to be unreachable using ancient DNA.
- Published
- 2020
- Full Text
- View/download PDF
40. Analyses of key genes involved in Arctic adaptation in polar bears suggest selection on both standing variation and de novo mutations played an important role.
- Author
-
Samaniego Castruita JA, Westbury MV, and Lorenzen ED
- Subjects
- Animals, Arctic Regions, Genome, Mutation, Phylogeny, Ursidae genetics
- Abstract
Background: Polar bears are uniquely adapted to an Arctic existence. Since their relatively recent divergence from their closest living relative, brown bears, less than 500,000 years ago, the species has evolved an array of novel traits suited to its Arctic lifestyle. Previous studies sought to uncover the genomic underpinnings of these unique characteristics, and disclosed the genes showing the strongest signal of positive selection in the polar bear lineage. Here, we survey a comprehensive dataset of 109 polar bear and 33 brown bear genomes to investigate the genomic variants within these top genes present in each species. Specifically, we investigate whether fixed homozygous variants in polar bears derived from selection on standing variation in the ancestral gene pool or on de novo mutation in the polar bear lineage., Results: We find that a large number of sites fixed in polar bears are biallelic in brown bears, suggesting selection on standing variation. Moreover, we uncover sites in which polar bears are fixed for a derived allele while brown bears are fixed for the ancestral allele, which we suggest may be a signal of de novo mutation in the polar bear lineage., Conclusions: Our findings suggest that, among other mechanisms, natural selection acting on changes in genes derived from a combination of variation already in the ancestral gene pool, and from de novo missense mutations in the polar bear lineage, may have enabled the rapid adaptation of polar bears to their new Arctic environment.
- Published
- 2020
- Full Text
- View/download PDF
41. Hyena paleogenomes reveal a complex evolutionary history of cross-continental gene flow between spotted and cave hyena.
- Author
-
Westbury MV, Hartmann S, Barlow A, Preick M, Ridush B, Nagel D, Rathgeber T, Ziegler R, Baryshnikov G, Sheng G, Ludwig A, Wiesel I, Dalen L, Bibi F, Werdelin L, Heller R, and Hofreiter M
- Subjects
- Animals, Genome, Mitochondrial, Phylogeny, Phylogeography, Evolution, Molecular, Gene Flow, Genetics, Population, Genome, Hyaenidae genetics
- Abstract
The genus Crocuta (African spotted and Eurasian cave hyenas) includes several closely related extinct and extant lineages. The relationships among these lineages, however, are contentious. Through the generation of population-level paleogenomes from late Pleistocene Eurasian cave hyena and genomes from modern African spotted hyena, we reveal the cross-continental evolutionary relationships between these enigmatic hyena lineages. We find a deep divergence (~2.5 Ma) between African and Eurasian Crocuta populations, suggesting that ancestral Crocuta left Africa around the same time as early Homo . Moreover, we find discordance between nuclear and mitochondrial phylogenies and evidence for bidirectional gene flow between African and Eurasian Crocuta after the lineages split, which may have complicated prior taxonomic classifications. Last, we find a number of introgressed loci that attained high frequencies within the recipient lineage, suggesting some level of adaptive advantage from admixture., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
42. Genomic analyses reveal an absence of contemporary introgressive admixture between fin whales and blue whales, despite known hybrids.
- Author
-
Westbury MV, Petersen B, and Lorenzen ED
- Subjects
- Animals, Balaenoptera classification, Computer Simulation, Female, Fin Whale classification, Gene Flow, Genetics, Population, Genomics statistics & numerical data, Humpback Whale classification, Humpback Whale genetics, Hybridization, Genetic, Male, Models, Genetic, Phylogeny, Species Specificity, Balaenoptera genetics, Fin Whale genetics, Genetic Introgression
- Abstract
Fin whales (Balaenoptera physalus) and blue whales (B. musculus) are the two largest species on Earth and are widely distributed across the world's oceans. Hybrids between these species appear to be relatively widespread and have been reported in both the North Atlantic and North Pacific; they are also relatively common, and have been proposed to occur once in every thousand fin whales. However, despite known hybridization, fin and blue whales are not sibling species. Rather, the closest living relative of fin whales are humpback whales (Megaptera novaeangliae). To improve the quality of fin whale data available for analysis, we assembled and annotated a fin whale nuclear genome using in-silico mate pair libraries and previously published short-read data. Using this assembly and genomic data from a humpback, blue, and bowhead whale, we investigated whether signatures of introgression between the fin and blue whale could be found. We find no signatures of contemporary admixture in the fin and blue whale genomes, although our analyses support ancestral gene flow between the species until 2.4-1.3 Ma. We propose the following explanations for our findings; i) fin/blue whale hybridization does not occur in the populations our samples originate from, ii) contemporary hybrids are a recent phenomenon and the genetic consequences have yet to become widespread across populations, or iii) fin/blue whale hybrids are under large negative selection, preventing them from backcrossing and contributing to the parental gene pools., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
43. Hybridization between two high Arctic cetaceans confirmed by genomic analysis.
- Author
-
Skovrind M, Castruita JAS, Haile J, Treadaway EC, Gopalakrishnan S, Westbury MV, Heide-Jørgensen MP, Szpak P, and Lorenzen ED
- Subjects
- Animals, Arctic Regions, Denmark, Genomics methods, Greenland epidemiology, Nitrogen Isotopes chemistry, Cetacea genetics, Gelatin genetics, Hybridization, Genetic genetics, Whales genetics
- Abstract
In 1990, a skull from a morphologically unusual Monodontid was found in West Greenland and collected for the Natural History Museum of Denmark, University of Copenhagen. From its intermediate morphology, the skull was hypothesized to be a beluga/narwhal hybrid. If confirmed, the specimen would, to our knowledge, represent the sole evidence of hybridization between the only two toothed whale species endemic to the Arctic. Here we present genome-wide DNA sequence data from the specimen and investigate its origin using a genomic reference panel of eight belugas and eight narwhals. Our analyses reveal that the specimen is a male, first-generation hybrid between a female narwhal and a male beluga. We use stable carbon and nitrogen isotope analysis to investigate the dietary niche of the hybrid and find a higher δ
13 C value than in both belugas and narwhals, suggesting a foraging strategy unlike either parental species. These results further our understanding of the interaction between belugas and narwhals, and underscore the importance of natural history collections in monitoring changes in biodiversity. In addition, our study exemplifies how recent major advances in population genomic analyses using genotype likelihoods can provide key biological and ecological insights from low-coverage data (down to 0.05x).- Published
- 2019
- Full Text
- View/download PDF
44. Narwhal Genome Reveals Long-Term Low Genetic Diversity despite Current Large Abundance Size.
- Author
-
Westbury MV, Petersen B, Garde E, Heide-Jørgensen MP, and Lorenzen ED
- Abstract
The narwhal (Monodon monoceros) is a highly specialized endemic Arctic cetacean, restricted to the Arctic seas bordering the North Atlantic. Low levels of genetic diversity have been observed across several narwhal populations using mitochondrial DNA and microsatellites. Despite this, the global abundance of narwhals was recently estimated at ∼170,000 individuals. However, the species is still considered vulnerable to changing climates due to its high specialization and restricted Arctic distribution. We assembled and annotated a genome from a narwhal from West Greenland. We find relatively low diversity at the genomic scale and show that this did not arise by recent inbreeding, but rather has been stable over an extended evolutionary timescale. We also find that the current large global abundance most likely reflects a recent rapid expansion from a much smaller founding population., (Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
45. Paleogenome Reveals Genetic Contribution of Extinct Giant Panda to Extant Populations.
- Author
-
Sheng GL, Basler N, Ji XP, Paijmans JLA, Alberti F, Preick M, Hartmann S, Westbury MV, Yuan JX, Jablonski NG, Xenikoudakis G, Hou XD, Xiao B, Liu JH, Hofreiter M, Lai XL, and Barlow A
- Subjects
- Animals, China, Endangered Species, Male, DNA, Ancient analysis, Genetic Variation, Genome, Ursidae genetics
- Abstract
Historically, the giant panda was widely distributed from northern China to southwestern Asia [1]. As a result of range contraction and fragmentation, extant individuals are currently restricted to fragmented mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where they are distributed among three major population clusters [2]. However, little is known about the genetic consequences of this dramatic range contraction. For example, were regions where giant pandas previously existed occupied by ancestors of present-day populations, or were these regions occupied by genetically distinct populations that are now extinct? If so, is there any contribution of these extinct populations to the genomes of giant pandas living today? To investigate these questions, we sequenced the nuclear genome of an ∼5,000-year-old giant panda from Jiangdongshan, Tengchong County in Yunnan Province, China. We find that this individual represents a genetically distinct population that diverged prior to the diversification of modern giant panda populations. We find evidence of differential admixture with this ancient population among modern individuals originating from different populations as well as within the same population. We also find evidence for directional gene flow, which transferred alleles from the ancient population into the modern giant panda lineages. A variable proportion of the genomes of extant individuals is therefore likely derived from the ancient population represented by our sequenced individual. Although extant giant panda populations retain reasonable genetic diversity, our results suggest that this represents only part of the genetic diversity this species harbored prior to its recent range contractions., (Copyright © 2019 Elsevier Ltd. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
46. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida).
- Author
-
Beermann J, Westbury MV, Hofreiter M, Hilgers L, Deister F, Neumann H, and Raupach MJ
- Subjects
- Amphipoda anatomy & histology, Animals, Biodiversity, DNA Barcoding, Taxonomic, Genome, Mitochondrial, Genomics methods, RNA, Ribosomal, 18S, RNA, Transfer, Amphipoda classification, Amphipoda genetics, Ecosystem
- Abstract
Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research.
- Published
- 2018
- Full Text
- View/download PDF
47. Extended and Continuous Decline in Effective Population Size Results in Low Genomic Diversity in the World's Rarest Hyena Species, the Brown Hyena.
- Author
-
Westbury MV, Hartmann S, Barlow A, Wiesel I, Leo V, Welch R, Parker DM, Sicks F, Ludwig A, Dalén L, and Hofreiter M
- Subjects
- Animals, Female, Genome, Male, Phylogeography, Population Density, Genetic Variation, Hyaenidae genetics
- Abstract
Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started ∼1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species.
- Published
- 2018
- Full Text
- View/download PDF
48. Ancient DNA from Giant Panda (Ailuropoda melanoleuca) of South-Western China Reveals Genetic Diversity Loss during the Holocene.
- Author
-
Sheng GL, Barlow A, Cooper A, Hou XD, Ji XP, Jablonski NG, Zhong BJ, Liu H, Flynn LJ, Yuan JX, Wang LR, Basler N, Westbury MV, Hofreiter M, and Lai XL
- Abstract
The giant panda was widely distributed in China and south-eastern Asia during the middle to late Pleistocene, prior to its habitat becoming rapidly reduced in the Holocene. While conservation reserves have been established and population numbers of the giant panda have recently increased, the interpretation of its genetic diversity remains controversial. Previous analyses, surprisingly, have indicated relatively high levels of genetic diversity raising issues concerning the efficiency and usefulness of reintroducing individuals from captive populations. However, due to a lack of DNA data from fossil specimens, it is unknown whether genetic diversity was even higher prior to the most recent population decline. We amplified complete cyt b and 12s rRNA, partial 16s rRNA and ND1 , and control region sequences from the mitochondrial genomes of two Holocene panda specimens. We estimated genetic diversity and population demography by analyzing the ancient mitochondrial DNA sequences alongside those from modern giant pandas, as well as from other members of the bear family (Ursidae). Phylogenetic analyses show that one of the ancient haplotypes is sister to all sampled modern pandas and the second ancient individual is nested among the modern haplotypes, suggesting that genetic diversity may indeed have been higher earlier during the Holocene. Bayesian skyline plot analysis supports this view and indicates a slight decline in female effective population size starting around 6000 years B.P., followed by a recovery around 2000 years ago. Therefore, while the genetic diversity of the giant panda has been affected by recent habitat contraction, it still harbors substantial genetic diversity. Moreover, while its still low population numbers require continued conservation efforts, there seem to be no immediate threats from the perspective of genetic evolutionary potential., Competing Interests: The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
49. The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae).
- Author
-
Folkertsma R, Westbury MV, Eccard JA, and Hofreiter M
- Abstract
The common vole, Microtus arvalis belongs to the genus Microtus in the subfamily Arvicolinae. In this study, the complete mitochondrial genome of M. arvalis was recovered using shotgun sequencing and an iterative mapping approach using three related species. Phylogenetic analyses using the sequence of 21 arvicoline species place the common vole as a sister species to the East European vole ( Microtus levis ), but as opposed to previous results we find no support for the recognition of the genus Neodon within the subfamily Arvicolinae, as this is, as well as the genus Lasiopodomys, found within the Microtus genus., Competing Interests: We would like to declare no conflict of interest. The authors are solely responsible for all content and writing., (© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.)
- Published
- 2018
- Full Text
- View/download PDF
50. Reduction of the contaminant fraction of DNA obtained from an ancient giant panda bone.
- Author
-
Basler N, Xenikoudakis G, Westbury MV, Song L, Sheng G, and Barlow A
- Subjects
- Animals, Base Composition, DNA Damage, Reproducibility of Results, Sequence Analysis, DNA methods, Bone and Bones metabolism, DNA, Ancient analysis, DNA, Ancient isolation & purification, Ursidae genetics
- Abstract
Objective: A key challenge in ancient DNA research is massive microbial DNA contamination from the deposition site which accumulates post mortem in the study organism's remains. Two simple and cost-effective methods to enrich the relative endogenous fraction of DNA in ancient samples involve treatment of sample powder with either bleach or Proteinase K pre-digestion prior to DNA extraction. Both approaches have yielded promising but varying results in other studies. Here, we contribute data on the performance of these methods using a comprehensive and systematic series of experiments applied to a single ancient bone fragment from a giant panda (Ailuropoda melanoleuca)., Results: Bleach and pre-digestion treatments increased the endogenous DNA content up to ninefold. However, the absolute amount of DNA retrieved was dramatically reduced by all treatments. We also observed reduced DNA damage patterns in pre-treated libraries compared to untreated ones, resulting in longer mean fragment lengths and reduced thymine over-representation at fragment ends. Guanine-cytosine (GC) contents of both mapped and total reads are consistent between treatments and conform to general expectations, indicating no obvious biasing effect of the applied methods. Our results therefore confirm the value of bleach and pre-digestion as tools in palaeogenomic studies, providing sufficient material is available.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.