104 results on '"Willighagen E"'
Search Results
2. P06-21: The ELIXIR Europe Toxicology Community in development: fostering toxicological research through collaboration and data reuse
- Author
-
Martens, M., primary, Willighagen, E., additional, Audouze, K., additional, Evelo, C., additional, and Stierum, R., additional
- Published
- 2023
- Full Text
- View/download PDF
3. Mapping of new style MassBank Accessions to wikidata [Data set]
- Author
-
Schulze, Tobias ; orcid:0000-0002-9744-8914, Willighagen, E., Schulze, Tobias ; orcid:0000-0002-9744-8914, and Willighagen, E.
- Published
- 2023
4. Mapping of new style MassBank Accessions to wikidata [Data set]
- Author
-
Schulze, Tobias, Willighagen, E., Schulze, Tobias, and Willighagen, E.
- Published
- 2023
5. From principles to reality. FAIR implementation in the nanosafety community
- Author
-
European Commission, Swedish Fund for Research Without Animal Experiments, Austrian Research Promotion Agency, Dumit, V.I., Ammar, A., Bakker, M.I., Bañares, Miguel A., Bossa, C., Costa, A., Cowie, H., Drobne, D., Exner, T.E., Farcal, L., Friedrichs, S., Furxhi, I., Grafström, R., Pérez-Haase, A., Himly, M., Jeliazkova, N., Lynch, I., Maier, D., Noorlander, C.W., Shin, H.K., Soler-Illia, G.J.A.A., Suarez-Merino, B., Willighagen, E., Nymark, P., European Commission, Swedish Fund for Research Without Animal Experiments, Austrian Research Promotion Agency, Dumit, V.I., Ammar, A., Bakker, M.I., Bañares, Miguel A., Bossa, C., Costa, A., Cowie, H., Drobne, D., Exner, T.E., Farcal, L., Friedrichs, S., Furxhi, I., Grafström, R., Pérez-Haase, A., Himly, M., Jeliazkova, N., Lynch, I., Maier, D., Noorlander, C.W., Shin, H.K., Soler-Illia, G.J.A.A., Suarez-Merino, B., Willighagen, E., and Nymark, P.
- Abstract
Developing safe and sustainable nanomaterials-based solutions to current global challenges including clean energy, sustainable food production and water security requires access to high quality data and appropriate analysis and modelling approaches. Achieving these challenges requires increased re-use of research data to accelerate progress and support development of new materials that are safe and sustainable for energy capture and storage, nano-agriculture and environmental remediation. The principles of Findability, Accessibility, Interoperability and Reusability (FAIR) provide a roadmap to enhanced data sharing and re-use, but require consensus within the nanosafety community on metadata, ontologies and persistent identifiers (among other things) and guidance to support implementation and achieve machine-readability. Here, we highlight the main focus of the AdvancedNano GO FAIR Implementation Network in supporting the nanosafety community with implementation of FAIR to maximize data-driven safe and sustainable application of nano- and advanced materials. © 2023 Elsevier Ltd
- Published
- 2023
6. MassBank/MassBank-data: release version 2022.06 to wikidata (2022.06) [Data set]
- Author
-
Schulze, Tobias ; orcid:0000-0002-9744-8914, Willighagen, E., Schulze, Tobias ; orcid:0000-0002-9744-8914, and Willighagen, E.
- Published
- 2022
7. MassBank/MassBank-data: release version 2022.06 to wikidata (2022.06) [Data set]
- Author
-
Schulze, Tobias, Willighagen, E., Schulze, Tobias, and Willighagen, E.
- Published
- 2022
8. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden M, Wang D, Mason M, Szalai B, Bulusu K, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Jang I, Ghazoui Z, Ahsen M, Vogel R, Neto E, Norman T, Tang E, Garnett M, Di Veroli G, Fawell S, Stolovitzky G, Guinney J, Dry J, Saez-Rodriguez J, Abante J, Abecassis B, Aben N, Aghamirzaie D, Aittokallio T, Akhtari F, Al-lazikani B, Alam T, Allam A, Allen C, de Almeida M, Altarawy D, Alves V, Amadoz A, Anchang B, Antolin A, Ash J, Aznar V, Ba-alawi W, Bagheri M, Bajic V, Ball G, Ballester P, Baptista D, Bare C, Bateson M, Bender A, Bertrand D, Wijayawardena B, Boroevich K, Bosdriesz E, Bougouffa S, Bounova G, Brouwer T, Bryant B, Calaza M, Calderone A, Calza S, Capuzzi S, Carbonell-Caballero J, Carlin D, Carter H, Castagnoli L, Celebi R, Cesareni G, Chang H, Chen G, Chen H, Cheng L, Chernomoretz A, Chicco D, Cho K, Cho S, Choi D, Choi J, Choi K, Choi M, De Cock M, Coker E, Cortes-Ciriano I, Cserzo M, Cubuk C, Curtis C, Van Daele D, Dang C, Dijkstra T, Dopazo J, Draghici S, Drosou A, Dumontier M, Ehrhart F, Eid F, ElHefnawi M, Elmarakeby H, van Engelen B, Engin H, de Esch I, Evelo C, Falcao A, Farag S, Fernandez-Lozano C, Fisch K, Flobak A, Fornari C, Foroushani A, Fotso D, Fourches D, Friend S, Frigessi A, Gao F, Gao X, Gerold J, Gestraud P, Ghosh S, Gillberg J, Godoy-Lorite A, Godynyuk L, Godzik A, Goldenberg A, Gomez-Cabrero D, Gonen M, de Graaf C, Gray H, Grechkin M, Guimera R, Guney E, Haibe-Kains B, Han Y, Hase T, He D, He L, Heath L, Hellton K, Helmer-Citterich M, Hidalgo M, Hidru D, Hill S, Hochreiter S, Hong S, Hovig E, Hsueh Y, Hu Z, Huang J, Huang R, Hunyady L, Hwang J, Hwang T, Hwang W, Hwang Y, Isayev O, Walk O, Jack J, Jahandideh S, Ji J, Jo Y, Kamola P, Kanev G, Karacosta L, Karimi M, Kaski S, Kazanov M, Khamis A, Khan S, Kiani N, Kim A, Kim J, Kim K, Kim S, Kim Y, Kirk P, Kitano H, Klambauer G, Knowles D, Ko M, Kohn-Luque A, Kooistra A, Kuenemann M, Kuiper M, Kurz C, Kwon M, van Laarhoven T, Laegreid A, Lederer S, Lee H, Lee J, Lee Y, Leppaho E, Lewis R, Li J, Li L, Liley J, Lim W, Lin C, Liu Y, Lopez Y, Low J, Lysenko A, Machado D, Madhukar N, De Maeyer D, Malpartida A, Mamitsuka H, Marabita F, Marchal K, Marttinen P, Mason D, Mazaheri A, Mehmood A, Mehreen A, Michaut M, Miller R, Mitsopoulos C, Modos D, Van Moerbeke M, Moo K, Motsinger-Reif A, Movva R, Muraru S, Muratov E, Mushthofa M, Nagarajan N, Nakken S, Nath A, Neuvial P, Newton R, Ning Z, De Niz C, Oliva B, Olsen C, Palmeri A, Panesar B, Papadopoulos S, Park J, Park S, Pawitan Y, Peluso D, Pendyala S, Peng J, Perfetto L, Pirro S, Plevritis S, Politi R, Poon H, Porta E, Prellner I, Preuer K, Pujana M, Ramnarine R, Reid J, Reyal F, Richardson S, Ricketts C, Rieswijk L, Rocha M, Rodriguez-Gonzalvez C, Roell K, Rotroff D, de Ruiter J, Rukawa P, Sadacca B, Safikhani Z, Safitri F, Sales-Pardo M, Sauer S, Schlichting M, Seoane J, Serra J, Shang M, Sharma A, Sharma H, Shen Y, Shiga M, Shin M, Shkedy Z, Shopsowitz K, Sinai S, Skola D, Smirnov P, Soerensen I, Soerensen P, Song J, Song S, Soufan O, Spitzmueller A, Steipe B, Suphavilai C, Tamayo S, Tamborero D, Tang J, Tanoli Z, Tarres-Deulofeu M, Tegner J, Thommesen L, Tonekaboni S, Tran H, De Troyer E, Truong A, Tsunoda T, Turu G, Tzeng G, Verbeke L, Videla S, Vis D, Voronkov A, Votis K, Wang A, Wang H, Wang P, Wang S, Wang W, Wang X, Wennerberg K, Wernisch L, Wessels L, van Westen G, Westerman B, White S, Willighagen E, Wurdinger T, Xie L, Xie S, Xu H, Yadav B, Yau C, Yeerna H, Yin J, Yu M, Yun S, Zakharov A, Zamichos A, Zanin M, Zeng L, Zenil H, Zhang F, Zhang P, Zhang W, Zhao H, Zhao L, Zheng W, Zoufir A, Zucknick M, AstraZeneca-Sanger Drug Combinatio, Ege Üniversitesi, Gönen, Mehmet (ORCID 0000-0002-2483-075X & YÖK ID 237468), Menden, Michael P., Wang, Dennis, Mason, Mike J., Szalai, Bence, Bulusu, Krishna C., Guan, Yuanfang, Yu, Thomas, Kang, Jaewoo, Jeon, Minji, Wolfinger, Russ, Nguyen, Tin, Zaslavskiy, Mikhail, Jang, In Sock, Ghazoui, Zara, Ahsen, Mehmet Eren, Vogel, Robert, Neto, Elias Chaibub, Norman, Thea, Tang, Eric K. Y., Garnett, Mathew J., Di Veroli, Giovanni Y., Fawell, Stephen, Stolovitzky, Gustavo, Guinney, Justin, Dry, Jonathan R., Saez-Rodriguez, Julio, Abante, Jordi, Abecassis, Barbara Schmitz, Aben, Nanne, Aghamirzaie, Delasa, Aittokallio, Tero, Akhtari, Farida S., Al-lazikani, Bissan, Alam, Tanvir, Allam, Amin, Allen, Chad, de Almeida, Mariana Pelicano, Altarawy, Doaa, Alves, Vinicius, Amadoz, Alicia, Anchang, Benedict, Antolin, Albert A., Ash, Jeremy R., Romeo Aznar, Victoria, Ba-alawi, Wail, Bagheri, Moeen, Bajic, Vladimir, Ball, Gordon, Ballester, Pedro J., Baptista, Delora, Bare, Christopher, Bateson, Mathilde, Bender, Andreas, Bertrand, Denis, Wijayawardena, Bhagya, Boroevich, Keith A., Bosdriesz, Evert, Bougouffa, Salim, Bounova, Gergana, Brouwer, Thomas, Bryant, Barbara, Calaza, Manuel, Calderone, Alberto, Calza, Stefano, Capuzzi, Stephen, Carbonell-Caballero, Jose, Carlin, Daniel, Carter, Hannah, Castagnoli, Luisa, Celebi, Remzi, Cesareni, Gianni, Chang, Hyeokyoon, Chen, Guocai, Chen, Haoran, Chen, Huiyuan, Cheng, Lijun, Chernomoretz, Ariel, Chicco, Davide, Cho, Kwang-Hyun, Cho, Sunghwan, Choi, Daeseon, Choi, Jaejoon, Choi, Kwanghun, Choi, Minsoo, De Cock, Martine, Coker, Elizabeth, Cortes-Ciriano, Isidro, Cserzo, Miklos, Cubuk, Cankut, Curtis, Christina, Van Daele, Dries, Dang, Cuong C., Dijkstra, Tjeerd, Dopazo, Joaquin, Draghici, Sorin, Drosou, Anastasios, Dumontier, Michel, Ehrhart, Friederike, Eid, Fatma-Elzahraa, ElHefnawi, Mahmoud, Elmarakeby, Haitham, van Engelen, Bo, Engin, Hatice Billur, de Esch, Iwan, Evelo, Chris, Falcao, Andre O., Farag, Sherif, Fernandez-Lozano, Carlos, Fisch, Kathleen, Flobak, Asmund, Fornari, Chiara, Foroushani, Amir B. K., Fotso, Donatien Chedom, Fourches, Denis, Friend, Stephen, Frigessi, Arnoldo, Gao, Feng, Gao, Xiaoting, Gerold, Jeffrey M., Gestraud, Pierre, Ghosh, Samik, Gillberg, Jussi, Godoy-Lorite, Antonia, Godynyuk, Lizzy, Godzik, Adam, Goldenberg, Anna, Gomez-Cabrero, David, de Graaf, Chris, Gray, Harry, Grechkin, Maxim, Guimera, Roger, Guney, Emre, Haibe-Kains, Benjamin, Han, Younghyun, Hase, Takeshi, He, Di, He, Liye, Heath, Lenwood S., Hellton, Kristoffer H., Helmer-Citterich, Manuela, Hidalgo, Marta R., Hidru, Daniel, Hill, Steven M., Hochreiter, Sepp, Hong, Seungpyo, Hovig, Eivind, Hsueh, Ya-Chih, Hu, Zhiyuan, Huang, Justin K., Huang, R. Stephanie, Hunyady, Laszlo, Hwang, Jinseub, Hwang, Tae Hyun, Hwang, Woochang, Hwang, Yongdeuk, Isayev, Olexandr, Walk, Oliver Bear Don't, Jack, John, Jahandideh, Samad, Ji, Jiadong, Jo, Yousang, Kamola, Piotr J., Kanev, Georgi K., Karacosta, Loukia, Karimi, Mostafa, Kaski, Samuel, Kazanov, Marat, Khamis, Abdullah M., Khan, Suleiman Ali, Kiani, Narsis A., Kim, Allen, Kim, Jinhan, Kim, Juntae, Kim, Kiseong, Kim, Kyung, Kim, Sunkyu, Kim, Yongsoo, Kim, Yunseong, Kirk, Paul D. W., Kitano, Hiroaki, Klambauer, Gunter, Knowles, David, Ko, Melissa, Kohn-Luque, Alvaro, Kooistra, Albert J., Kuenemann, Melaine A., Kuiper, Martin, Kurz, Christoph, Kwon, Mijin, van Laarhoven, Twan, Laegreid, Astrid, Lederer, Simone, Lee, Heewon, Lee, Jeon, Lee, Yun Woo, Leppaho, Eemeli, Lewis, Richard, Li, Jing, Li, Lang, Liley, James, Lim, Weng Khong, Lin, Chieh, Liu, Yiyi, Lopez, Yosvany, Low, Joshua, Lysenko, Artem, Machado, Daniel, Madhukar, Neel, De Maeyer, Dries, Malpartida, Ana Belen, Mamitsuka, Hiroshi, Marabita, Francesco, Marchal, Kathleen, Marttinen, Pekka, Mason, Daniel, Mazaheri, Alireza, Mehmood, Arfa, Mehreen, Ali, Michaut, Magali, Miller, Ryan A., Mitsopoulos, Costas, Modos, Dezso, Van Moerbeke, Marijke, Moo, Keagan, Motsinger-Reif, Alison, Movva, Rajiv, Muraru, Sebastian, Muratov, Eugene, Mushthofa, Mushthofa, Nagarajan, Niranjan, Nakken, Sigve, Nath, Aritro, Neuvial, Pierre, Newton, Richard, Ning, Zheng, De Niz, Carlos, Oliva, Baldo, Olsen, Catharina, Palmeri, Antonio, Panesar, Bhawan, Papadopoulos, Stavros, Park, Jaesub, Park, Seonyeong, Park, Sungjoon, Pawitan, Yudi, Peluso, Daniele, Pendyala, Sriram, Peng, Jian, Perfetto, Livia, Pirro, Stefano, Plevritis, Sylvia, Politi, Regina, Poon, Hoifung, Porta, Eduard, Prellner, Isak, Preuer, Kristina, Angel Pujana, Miguel, Ramnarine, Ricardo, Reid, John E., Reyal, Fabien, Richardson, Sylvia, Ricketts, Camir, Rieswijk, Linda, Rocha, Miguel, Rodriguez-Gonzalvez, Carmen, Roell, Kyle, Rotroff, Daniel, de Ruiter, Julian R., Rukawa, Ploy, Sadacca, Benjamin, Safikhani, Zhaleh, Safitri, Fita, Sales-Pardo, Marta, Sauer, Sebastian, Schlichting, Moritz, Seoane, Jose A., Serra, Jordi, Shang, Ming-Mei, Sharma, Alok, Sharma, Hari, Shen, Yang, Shiga, Motoki, Shin, Moonshik, Shkedy, Ziv, Shopsowitz, Kevin, Sinai, Sam, Skola, Dylan, Smirnov, Petr, Soerensen, Izel Fourie, Soerensen, Peter, Song, Je-Hoon, Song, Sang Ok, Soufan, Othman, Spitzmueller, Andreas, Steipe, Boris, Suphavilai, Chayaporn, Tamayo, Sergio Pulido, Tamborero, David, Tang, Jing, Tanoli, Zia-ur-Rehman, Tarres-Deulofeu, Marc, Tegner, Jesper, Thommesen, Liv, Tonekaboni, Seyed Ali Madani, Tran, Hong, De Troyer, Ewoud, Truong, Amy, Tsunoda, Tatsuhiko, Turu, Gabor, Tzeng, Guang-Yo, Verbeke, Lieven, Videla, Santiago, Vis, Daniel, Voronkov, Andrey, Votis, Konstantinos, Wang, Ashley, Wang, Hong-Qiang Horace, Wang, Po-Wei, Wang, Sheng, Wang, Wei, Wang, Xiaochen, Wang, Xin, Wennerberg, Krister, Wernisch, Lorenz, Wessels, Lodewyk, van Westen, Gerard J. P., Westerman, Bart A., White, Simon Richard, Willighagen, Egon, Wurdinger, Tom, Xie, Lei, Xie, Shuilian, Xu, Hua, Yadav, Bhagwan, Yau, Christopher, Yeerna, Huwate, Yin, Jia Wei, Yu, Michael, Yu, MinHwan, Yun, So Jeong, Zakharov, Alexey, Zamichos, Alexandros, Zanin, Massimiliano, Zeng, Li, Zenil, Hector, Zhang, Frederick, Zhang, Pengyue, Zhang, Wei, Zhao, Hongyu, Zhao, Lan, Zheng, Wenjin, Zoufir, Azedine, Zucknick, Manuela, College of Engineering, Department of Industrial Engineering, Institute of Data Science, RS: FSE DACS IDS, Bioinformatica, RS: NUTRIM - R1 - Obesity, diabetes and cardiovascular health, RS: FHML MaCSBio, Promovendi NTM, Tero Aittokallio / Principal Investigator, Bioinformatics, Institute for Molecular Medicine Finland, Hu, Z, Fotso, DC, Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden, Michael P. [0000-0003-0267-5792], Mason, Mike J. [0000-0002-5652-7739], Yu, Thomas [0000-0002-5841-0198], Kang, Jaewoo [0000-0001-6798-9106], Nguyen, Tin [0000-0001-8001-9470], Ahsen, Mehmet Eren [0000-0002-4907-0427], Stolovitzky, Gustavo [0000-0002-9618-2819], Guinney, Justin [0000-0003-1477-1888], Saez-Rodriguez, Julio [0000-0002-8552-8976], Apollo - University of Cambridge Repository, Menden, Michael P [0000-0003-0267-5792], Mason, Mike J [0000-0002-5652-7739], Pathology, CCA - Cancer biology and immunology, Medical oncology laboratory, Neurosurgery, Chemistry and Pharmaceutical Sciences, AIMMS, Medicinal chemistry, Universidade do Minho, Department of Computer Science, Professorship Marttinen P., Aalto-yliopisto, and Aalto University
- Subjects
Drug Resistance ,02 engineering and technology ,13 ,PATHWAY ,Antineoplastic Combined Chemotherapy Protocols ,Molecular Targeted Therapy ,Càncer ,lcsh:Science ,media_common ,Cancer ,Tumor ,Settore BIO/18 ,Settore BIO/11 ,Drug combinations ,High-throughput screening ,Drug Synergism ,purl.org/becyt/ford/1.2 [https] ,Genomics ,Machine Learning ,predictions ,3. Good health ,ddc ,Technologie de l'environnement, contrôle de la pollution ,Benchmarking ,5.1 Pharmaceuticals ,Cancer treatment ,Farmacogenètica ,Science & Technology - Other Topics ,Development of treatments and therapeutic interventions ,0210 nano-technology ,Human ,Drug ,media_common.quotation_subject ,Science ,49/23 ,ADAM17 Protein ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,SDG 3 - Good Health and Well-being ,RESOURCE ,Machine learning ,Genetics ,Chimie ,Humans ,BREAST-CANCER ,CELL ,49/98 ,Science & Technology ,Antineoplastic Combined Chemotherapy Protocol ,45 ,MUTATIONS ,Computational Biology ,Androgen receptor ,Breast-cancer ,Gene ,Cell ,Inhibition ,Resistance ,Pathway ,Mutations ,Landscape ,Resource ,631/114/1305 ,medicine.disease ,Drug synergy ,49 ,030104 developmental biology ,Pharmacogenetics ,Mutation ,Ciências Médicas::Biotecnologia Médica ,lcsh:Q ,631/154/1435/2163 ,Biomarkers ,RESISTANCE ,0301 basic medicine ,ING-INF/06 - BIOINGEGNERIA ELETTRONICA E INFORMATICA ,Statistical methods ,Computer science ,General Physics and Astronomy ,Datasets as Topic ,Drug resistance ,purl.org/becyt/ford/1 [https] ,Phosphatidylinositol 3-Kinases ,Biotecnologia Médica [Ciências Médicas] ,Neoplasms ,Science and technology ,Phosphoinositide-3 Kinase Inhibitors ,Multidisciplinary ,Biomarkers, Tumor ,Cell Line, Tumor ,Drug Antagonism ,Drug Resistance, Neoplasm ,Treatment Outcome ,Pharmacogenetic ,article ,ANDROGEN RECEPTOR ,49/39 ,631/114/2415 ,021001 nanoscience & nanotechnology ,692/4028/67 ,Multidisciplinary Sciences ,317 Pharmacy ,Patient Safety ,Systems biology ,3122 Cancers ,INHIBITION ,Computational biology ,Cell Line ,medicine ,LANDSCAPE ,Physique ,Human Genome ,Data Science ,General Chemistry ,AstraZeneca-Sanger Drug Combination DREAM Consortium ,Astronomie ,GENE ,Good Health and Well Being ,Pharmacogenomics ,Genomic ,Neoplasm ,631/553 ,Phosphatidylinositol 3-Kinase - Abstract
PubMed: 31209238, The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells. © 2019, The Author(s)., National Institute for Health Research, NIHR Wellcome Trust, WT: 102696, 206194 Magyar Tudományos Akadémia, MTA Bayer 668858 PrECISE AstraZeneca, We thank the Genomics of Drug Sensitivity in Cancer and COSMIC teams at the Wellcome Trust Sanger Institute for help with the preparation of the molecular data, Denes Turei for help with Omnipath, and Katjusa Koler for help with matching drug names across combination screens. We thank AstraZeneca for funding and provision of data to the DREAM Consortium to run the challenge, and funding from the European Union Horizon 2020 research (under grant agreement No 668858 PrECISE to J.S.R.), the Joint Research Center for Computational Biomedicine (which is partially funded by Bayer AG) to J.S.R., National Institute for Health Research (NIHR) Sheffield Biomedical Research Center, Premium Postdoctoral Fellowship Program of the Hungarian Academy of Sciences. M.G lab is supported by Wellcome Trust (102696 and 206194)., Competing interests: K.C.B., Z.G., G.Y.D., E.K.Y.T., S.F., and J.R.D. are AstraZeneca employees. K.C.B., Z.G., E.K.Y.T., S.F., and J.R.D. are AstraZeneca shareholders. Y.G. receives personal compensation from Eli Lilly and Company, is a shareholder of Cleerly, Inc., and Ann Arbor Algorithms, Inc. M.G. receives research funding from AstraZeneca and has performed consultancy for Sanofi. The remaining authors declare no competing interests.
- Published
- 2019
9. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
- Author
-
Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., Saez-Rodriguez J., Menden, M, Wang, D, Mason, M, Szalai, B, Bulusu, K, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, Abante, J, Abecassis, B, Aben, N, Aghamirzaie, D, Aittokallio, T, Akhtari, F, Al-lazikani, B, Alam, T, Allam, A, Allen, C, de Almeida, M, Altarawy, D, Alves, V, Amadoz, A, Anchang, B, Antolin, A, Ash, J, Aznar, V, Ba-alawi, W, Bagheri, M, Bajic, V, Ball, G, Ballester, P, Baptista, D, Bare, C, Bateson, M, Bender, A, Bertrand, D, Wijayawardena, B, Boroevich, K, Bosdriesz, E, Bougouffa, S, Bounova, G, Brouwer, T, Bryant, B, Calaza, M, Calderone, A, Calza, S, Capuzzi, S, Carbonell-Caballero, J, Carlin, D, Carter, H, Castagnoli, L, Celebi, R, Cesareni, G, Chang, H, Chen, G, Chen, H, Cheng, L, Chernomoretz, A, Chicco, D, Cho, K, Cho, S, Choi, D, Choi, J, Choi, K, Choi, M, Cock, M, Coker, E, Cortes-Ciriano, I, Cserzo, M, Cubuk, C, Curtis, C, Daele, D, Dang, C, Dijkstra, T, Dopazo, J, Draghici, S, Drosou, A, Dumontier, M, Ehrhart, F, Eid, F, Elhefnawi, M, Elmarakeby, H, van Engelen, B, Engin, H, de Esch, I, Evelo, C, Falcao, A, Farag, S, Fernandez-Lozano, C, Fisch, K, Flobak, A, Fornari, C, Foroushani, A, Fotso, D, Fourches, D, Friend, S, Frigessi, A, Gao, F, Gao, X, Gerold, J, Gestraud, P, Ghosh, S, Gillberg, J, Godoy-Lorite, A, Godynyuk, L, Godzik, A, Goldenberg, A, Gomez-Cabrero, D, Gonen, M, de Graaf, C, Gray, H, Grechkin, M, Guimera, R, Guney, E, Haibe-Kains, B, Han, Y, Hase, T, He, D, He, L, Heath, L, Hellton, K, Helmer-Citterich, M, Hidalgo, M, Hidru, D, Hill, S, Hochreiter, S, Hong, S, Hovig, E, Hsueh, Y, Hu, Z, Huang, J, Huang, R, Hunyady, L, Hwang, J, Hwang, T, Hwang, W, Hwang, Y, Isayev, O, Don't Walk, O, Jack, J, Jahandideh, S, Ji, J, Jo, Y, Kamola, P, Kanev, G, Karacosta, L, Karimi, M, Kaski, S, Kazanov, M, Khamis, A, Khan, S, Kiani, N, Kim, A, Kim, J, Kim, K, Kim, S, Kim, Y, Kirk, P, Kitano, H, Klambauer, G, Knowles, D, Ko, M, Kohn-Luque, A, Kooistra, A, Kuenemann, M, Kuiper, M, Kurz, C, Kwon, M, van Laarhoven, T, Laegreid, A, Lederer, S, Lee, H, Lee, J, Lee, Y, Lepp_aho, E, Lewis, R, Li, J, Li, L, Liley, J, Lim, W, Lin, C, Liu, Y, Lopez, Y, Low, J, Lysenko, A, Machado, D, Madhukar, N, Maeyer, D, Malpartida, A, Mamitsuka, H, Marabita, F, Marchal, K, Marttinen, P, Mason, D, Mazaheri, A, Mehmood, A, Mehreen, A, Michaut, M, Miller, R, Mitsopoulos, C, Modos, D, Moerbeke, M, Moo, K, Motsinger-Reif, A, Movva, R, Muraru, S, Muratov, E, Mushthofa, M, Nagarajan, N, Nakken, S, Nath, A, Neuvial, P, Newton, R, Ning, Z, Niz, C, Oliva, B, Olsen, C, Palmeri, A, Panesar, B, Papadopoulos, S, Park, J, Park, S, Pawitan, Y, Peluso, D, Pendyala, S, Peng, J, Perfetto, L, Pirro, S, Plevritis, S, Politi, R, Poon, H, Porta, E, Prellner, I, Preuer, K, Pujana, M, Ramnarine, R, Reid, J, Reyal, F, Richardson, S, Ricketts, C, Rieswijk, L, Rocha, M, Rodriguez-Gonzalvez, C, Roell, K, Rotroff, D, de Ruiter, J, Rukawa, P, Sadacca, B, Safikhani, Z, Safitri, F, Sales-Pardo, M, Sauer, S, Schlichting, M, Seoane, J, Serra, J, Shang, M, Sharma, A, Sharma, H, Shen, Y, Shiga, M, Shin, M, Shkedy, Z, Shopsowitz, K, Sinai, S, Skola, D, Smirnov, P, Soerensen, I, Soerensen, P, Song, J, Song, S, Soufan, O, Spitzmueller, A, Steipe, B, Suphavilai, C, Tamayo, S, Tamborero, D, Tang, J, Tanoli, Z, Tarres-Deulofeu, M, Tegner, J, Thommesen, L, Tonekaboni, S, Tran, H, Troyer, E, Truong, A, Tsunoda, T, Turu, G, Tzeng, G, Verbeke, L, Videla, S, Vis, D, Voronkov, A, Votis, K, Wang, A, Wang, H, Wang, P, Wang, S, Wang, W, Wang, X, Wennerberg, K, Wernisch, L, Wessels, L, van Westen, G, Westerman, B, White, S, Willighagen, E, Wurdinger, T, Xie, L, Xie, S, Xu, H, Yadav, B, Yau, C, Yeerna, H, Yin, J, Yu, M, Yun, S, Zakharov, A, Zamichos, A, Zanin, M, Zeng, L, Zenil, H, Zhang, F, Zhang, P, Zhang, W, Zhao, H, Zhao, L, Zheng, W, Zoufir, A, Zucknick, M, Jang, I, Ghazoui, Z, Ahsen, M, Vogel, R, Neto, E, Norman, T, Tang, E, Garnett, M, Veroli, G, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J, Saez-Rodriguez, J, Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K. -H., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzo M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F. -E., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y. -C., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don't Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim K., Kim S., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M. -M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J. -H., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z. -U. -R., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G. -Y., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. -Q. H., Wang P. -W., Wang S., Wang W., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M. H., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., and Saez-Rodriguez J.
- Abstract
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
- Published
- 2019
10. P06-27 Transcriptomics data to inform risk assessments by extensive gene set enrichment approaches linking to Adverse Outcome Pathways.
- Author
-
Martens, M., Willighagen, E., and Evelo, C.
- Subjects
- *
TRANSCRIPTOMES , *RISK assessment , *GENES - Published
- 2024
- Full Text
- View/download PDF
11. Novel means of enabling high-throughput toxicogenomics and adverse outcome pathways for prediction of lung toxicity
- Author
-
Nymark, P., primary, Martens, M., additional, Willighagen, E., additional, Hongisto, V., additional, Kohonen, P., additional, Grafström, R.C., additional, Beronius, A., additional, and Halappanavar, S., additional
- Published
- 2021
- Full Text
- View/download PDF
12. FAIR assessment tools: evaluating use and performance
- Author
-
Krans, N A, Ammar, A, Nymark, P, Willighagen, E L, Bakker, M I, Quik, J T K, Bioinformatica, and RS: NUTRIM - R1 - Obesity, diabetes and cardiovascular health
- Subjects
FAIR data ,Self-Assessment ,Databases, Factual ,Materials Science (miscellaneous) ,Public Health, Environmental and Occupational Health ,Nano -informatics ,Assessment ,Risk Assessment ,Decision support ,Tools ,Nano-informatics ,Safety, Risk, Reliability and Quality ,Plastics ,Safety Research ,FAIR ,Data Management - Abstract
Publishing research data using a findable, accessible, interoperable, and reusable (FAIR) approach is paramount to further innovation in many areas of research. In particular in developing innovative approaches to predict (eco)toxicological risks in (nano or advanced) material design where efficient use of existing data is essential. The use of tools assessing the FAIRness of data helps the future improvement of data FAIRness and therefore their re-use. This paper reviews ten FAIR assessment tools that have been evaluated and characterized using two datasets from the nanomaterials and microplastics risk assessment domain. The tools were grouped into four categories: online and offline self-assessment survey based, online (semi-) automated and other tools. We found that the online self-assessment tools can be used for a quick scan of a user's dataset due to their ease of use, little need for experience and short time investment. When a user is looking to assess full databases, and not just datasets, for their FAIRness, (semi-)automated tools are more practical. The offline assessment tools were found to be limited and unreliable due to a lack of guidance and an under-developed state. To further characterize the usability, two datasets were run through all tools to check the similarity in the tools' results. As most of the tools differ in their implementation of the FAIR principles, a large variety in outcomes was obtained. Furthermore, it was observed that only one tool gives recommendations to the user on how to improve the FAIRness of the evaluated dataset. This paper gives clear recommendations for both the user and the developer of FAIR assessment tools.
- Published
- 2022
13. COVID-19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms (vol 17, e10387, 2021)
- Author
-
Ostaszewski, M, Niarakis, A, Mazein, A, Kuperstein, I, Phair, R, Orta-Resendiz, A, Singh, V, Aghamiri, S, Acencio, M, Glaab, E, Ruepp, A, Fobo, G, Montrone, C, Brauner, B, Frishman, G, Gomez, L, Somers, J, Hoch, M, Gupta, S, Scheel, J, Borlinghaus, H, Czauderna, T, Schreiber, F, Montagud, A, de Leon, M, Funahashi, A, Hiki, Y, Hiroi, N, Yamada, T, Drager, A, Renz, A, Naveez, M, Bocskei, Z, Messina, F, Bornigen, D, Fergusson, L, Conti, M, Rameil, M, Nakonecnij, V, Vanhoefer, J, Schmiester, L, Wang, M, Ackerman, E, Shoemaker, J, Zucker, J, Oxford, K, Teuton, J, Kocakaya, E, Summak, G, Hanspers, K, Kutmon, M, Coort, S, Eijssen, L, Ehrhart, F, Rex, D, Slenter, D, Martens, M, Pham, N, Haw, R, Jassal, B, Matthews, L, Orlic-Milacic, M, Senff-Ribeiro, A, Rothfels, K, Shamovsky, V, Stephan, R, Sevilla, C, Varusai, T, Ravel, J, Fraser, R, Ortseifen, V, Marchesi, S, Gawron, P, Smula, E, Heirendt, L, Satagopam, V, Gm, W, Riutta, A, Golebiewski, M, Owen, S, Goble, C, Xm, H, Overall, R, Maier, D, Bauch, A, Gyori, B, Bachman, J, Vega, C, Groues, V, Vazquez, M, Porras, P, Licata, L, Iannuccelli, M, Sacco, F, Nesterova, A, Yuryev, A, de Waard, A, Turei, D, Luna, A, Babur, O, Soliman, S, Valdeolivas, A, Esteban-Medina, M, Pena-Chilet, M, Rian, K, Helikar, T, Puniya, B, Modos, D, Treveil, A, Olbei, M, De Meulder, B, Ballereau, S, Dugourd, A, Naldi, A, Noel, V, Calzone, L, Sander, C, Demir, E, Korcsmaros, T, Freeman, T, Auge, F, Beckmann, J, Hasenauer, J, Wolkenhauer, O, Willighagen, E, Pico, A, Evelo, C, Gillespie, M, Stein, L, Hermjakob, H, D'Eustachio, P, Saez-Rodriguez, J, Dopazo, J, Valencia, A, Kitano, H, Barillot, E, Auffray, C, Balling, R, and Schneider, R
- Subjects
Settore BIO/18 ,Settore BIO/11 - Published
- 2021
14. The metaRbolomics Toolbox in Bioconductor and beyond
- Author
-
Stanstrup, J., Broeckling, C.D., Helmus, R., Hoffmann, N., Mathé, E., Naake, T., Nicolotti, L., Peters, K., Rainer, J., Salek, R.M., Schulze, Tobias, Schymanski, E.L., Stravs, M.A., Thévenot, E.A., Treutler, H., Weber, R.J.M., Willighagen, E., Witting, M., Neumann, S., Stanstrup, J., Broeckling, C.D., Helmus, R., Hoffmann, N., Mathé, E., Naake, T., Nicolotti, L., Peters, K., Rainer, J., Salek, R.M., Schulze, Tobias, Schymanski, E.L., Stravs, M.A., Thévenot, E.A., Treutler, H., Weber, R.J.M., Willighagen, E., Witting, M., and Neumann, S.
- Abstract
Metabolomics aims to measure and characterise the complex composition of metabolites in a biological system. Metabolomics studies involve sophisticated analytical techniques such as mass spectrometry and nuclear magnetic resonance spectroscopy, and generate large amounts of high-dimensional and complex experimental data. Open source processing and analysis tools are of major interest in light of innovative, open and reproducible science. The scientific community has developed a wide range of open source software, providing freely available advanced processing and analysis approaches. The programming and statistics environment R has emerged as one of the most popular environments to process and analyse Metabolomics datasets. A major benefit of such an environment is the possibility of connecting different tools into more complex workflows. Combining reusable data processing R scripts with the experimental data thus allows for open, reproducible research. This review provides an extensive overview of existing packages in R for different steps in a typical computational metabolomics workflow, including data processing, biostatistics, metabolite annotation and identification, and biochemical network and pathway analysis. Multifunctional workflows, possible user interfaces and integration into workflow management systems are also reviewed. In total, this review summarises more than two hundred metabolomics specific packages primarily available on CRAN, Bioconductor and GitHub.
- Published
- 2019
15. OpenRiskNet, an open e-infrastructure to support data sharing, knowledge integration and in silico analysis and modelling in risk assessment
- Author
-
Exner, T. E., Dokler, J., Bachler, D., Farcal, L. R., Evelo, C. T., Willighagen, E., Jennen, D. G. J., Jabocs, M., Doganis, P., Sarimveis, H., Lynch, I., Gkoutos, G., Kramer, S., Notredame, C., Spjuth, Ola, Jennings, P., Dudgeon, T., Bols, F., Hardy, B., Exner, T. E., Dokler, J., Bachler, D., Farcal, L. R., Evelo, C. T., Willighagen, E., Jennen, D. G. J., Jabocs, M., Doganis, P., Sarimveis, H., Lynch, I., Gkoutos, G., Kramer, S., Notredame, C., Spjuth, Ola, Jennings, P., Dudgeon, T., Bols, F., and Hardy, B.
- Published
- 2018
- Full Text
- View/download PDF
16. Introducing WikiPathways to link molecular pathways to adverse outcome pathways to support regulatory risk assessment
- Author
-
Martens, M., primary, Willighagen, E., additional, Nymark, P., additional, Grafström, R., additional, Burgoon, L.D., additional, Aladjov, H.T., additional, Andón, F. Torres, additional, and Evelo, C.T., additional
- Published
- 2018
- Full Text
- View/download PDF
17. OpenRiskNet, an open e-infrastructure to support data sharing, knowledge integration and in silico analysis and modelling in risk assessment
- Author
-
Exner, T.E., primary, Dokler, J., additional, Bachler, D., additional, Farcal, L.R., additional, Evelo, C.T., additional, Willighagen, E., additional, Jennen, D.G.J., additional, Jabocs, M., additional, Doganis, P., additional, Sarimveis, H., additional, Lynch, I., additional, Gkoutos, G., additional, Kramer, S., additional, Notredame, C., additional, Spjuth, O., additional, Jennings, P., additional, Dudgeon, T., additional, Bois, F., additional, and Hardy, B., additional
- Published
- 2018
- Full Text
- View/download PDF
18. NanoWiki (release 1)
- Author
-
Willighagen, E., Bioinformatica, and RS: NUTRIM - R4 - Gene-environment interaction
- Published
- 2015
19. Metabolite BridgeDb ID Mapping Database (20150717)
- Author
-
Willighagen, E., Bioinformatica, and RS: NUTRIM - R4 - Gene-environment interaction
- Published
- 2015
20. WikiPathways SD file (v.1)
- Author
-
Willighagen, E., Bioinformatica, and RS: NUTRIM - R4 - Gene-environment interaction
- Published
- 2015
21. Scientific Lenses to Support Multiple Views over Linked Chemistry Data
- Author
-
Batchelor, C., Brenninkmeijer, C.A., Chichester, C., Davies, M., Digles, D., Dunlop, I., Evelo, C., Gaulton, A., Goble, C., Gray, A.G., Groth, P., Harland, L., Karapetyan, K., Loizou, A., Overington, J., Pettifer, S., Steele, J., Stevens, R, Tkachenko, V., Waagmeester, A., Williams, A., Willighagen, E., Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Noy, N., Janowicz, K., Business Web and Media, Artificial intelligence, Network Institute, Knowledge Representation and Reasoning, Intelligent Information Systems, Bioinformatica, and RS: NUTRIM - R4 - Gene-environment interaction
- Subjects
Computer science ,Use case ,Linked data ,Data mining ,Equivalence (formal languages) ,Multiple view ,computer.software_genre ,computer ,Equivalence (measure theory) ,Data integration - Abstract
When are two entries about a small molecule in different datasets the same? If they have the same drug name, chemical structure, or some other criteria? The choice depends upon the application to which the data will be put. However, existing Linked Data approaches provide a single global view over the data with no way of varying the notion of equivalence to be applied. In this paper, we present an approach to enable applications to choose the equivalence criteria to apply between datasets. Thus, supporting multiple dynamic views over the Linked Data. For chemical data, we show that multiple sets of links can be automatically generated according to different equivalence criteria and published with semantic descriptions capturing their context and interpretation. This approach has been applied within a large scale public-private data integration platform for drug discovery. To cater for different use cases, the platform allows the application of different lenses which vary the equivalence rules to be applied based on the context and interpretation of the links.
- Published
- 2014
22. Toward the Replacement of Animal Experiments through the Bioinformatics-driven Analysis of 'Omics' Data from Human Cell Cultures.
- Author
-
Grafstrom, R. C., Grafstrom, R. C., Nymark, P., Hongisto, V., Spjuth, O., Ceder, R., Willighagen, E., Hardy, B., Kaski, S., Kohonen, P., Grafstrom, R. C., Grafstrom, R. C., Nymark, P., Hongisto, V., Spjuth, O., Ceder, R., Willighagen, E., Hardy, B., Kaski, S., and Kohonen, P.
- Abstract
This paper outlines the work for which Roland Grafstrom and Pekka Kohonen were awarded the 2014 Lush Science Prize. The research activities of the Grafstrom laboratory have, for many years, covered cancer biology studies, as well as the development and application of toxicity-predictive in vitro models to determine chemical safety. Through the integration of in silico analyses of diverse types of genomics data (transcriptomic and proteomic), their efforts have proved to fit well into the recently-developed Adverse Outcome Pathway paradigm. Genomics analysis within state-of-the-art cancer biology research and Toxicology in the 21st Century concepts share many technological tools. A key category within the Three Rs paradigm is the Replacement of animals in toxicity testing with alternative methods, such as bioinformatics-driven analyses of data obtained from human cell cultures exposed to diverse toxicants. This work was recently expanded within the pan-European SEURAT-1 project (Safety Evaluation Ultimately Replacing Animal Testing), to replace repeat-dose toxicity testing with data-rich analyses of sophisticated cell culture models. The aims and objectives of the SEURAT project have been to guide the application, analysis, interpretation and storage of 'omics' technology-derived data within the service-oriented sub-project, ToxBank. Particularly addressing the Lush Science Prize focus on the relevance of toxicity pathways, a 'data warehouse' that is under continuous expansion, coupled with the development of novel data storage and management methods for toxicology, serve to address data integration across multiple 'omics' technologies. The prize winners' guiding principles and concepts for modern knowledge management of toxicological data are summarised. The translation of basic discovery results ranged from chemical-testing and material-testing data, to information relevant to human health and environmental safety.
- Published
- 2015
23. Bioclipse-R: integrating management and visualization of life science data with statistical analysis
- Author
-
Spjuth, O., Spjuth, O., Georgiev, V., Carlsson, L., Alvarsson, J., Berg, A., Willighagen, E., Wikberg, J. E., Eklund, M., Spjuth, O., Spjuth, O., Georgiev, V., Carlsson, L., Alvarsson, J., Berg, A., Willighagen, E., Wikberg, J. E., and Eklund, M.
- Abstract
SUMMARY: Bioclipse, a graphical workbench for the life sciences, provides functionality for managing and visualizing life science data. We introduce Bioclipse-R, which integrates Bioclipse and the statistical programming language R. The synergy between Bioclipse and R is demonstrated by the construction of a decision support system for anticancer drug screening and mutagenicity prediction, which shows how Bioclipse-R can be used to perform complex tasks from within a single software system. Availability and implementation: Bioclipse-R is implemented as a set of Java plug-ins for Bioclipse based on the R-package rj. Source code and binary packages are available from https://github.com/bioclipse and http://www.bioclipse.net/bioclipse-r, respectively. CONTACT: martin.eklund@farmbio.uu.se SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
- Published
- 2013
24. The ToxBank Data Warehouse: Supporting the Replacement of In Vivo Repeated Dose Systemic Toxicity Testing
- Author
-
Kohonen, P., Kohonen, P., Benfenati, E., Bower, D., Ceder, R., Crump, M., Cross, K., Grafström, R.C., Healy, L., Helma, C., Jeliazkova, N., Jeliazkova, V., Maggioni, S., Miller, S., Myatt, G., Rautenberg, M., Stacey, S., Willighagen, E., Wiseman, J., Hardy, B., Kohonen, P., Kohonen, P., Benfenati, E., Bower, D., Ceder, R., Crump, M., Cross, K., Grafström, R.C., Healy, L., Helma, C., Jeliazkova, N., Jeliazkova, V., Maggioni, S., Miller, S., Myatt, G., Rautenberg, M., Stacey, S., Willighagen, E., Wiseman, J., and Hardy, B.
- Abstract
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or 'gold compounds' for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds.
- Published
- 2013
25. Changing computational research. The challenges ahead
- Author
-
Neylon, Cameron, Aerts, J., Brown, C.T., Coles, S.J., Hatton, L., Lemire, D., Millman, K.J., Murray-Rust, P., Perez, F., Saunders, N., Shah, N., Smith, A., Varoquaux, G., Willighagen, E., Neylon, Cameron, Aerts, J., Brown, C.T., Coles, S.J., Hatton, L., Lemire, D., Millman, K.J., Murray-Rust, P., Perez, F., Saunders, N., Shah, N., Smith, A., Varoquaux, G., and Willighagen, E.
- Abstract
EDITORIAL The past year has been an interesting one for those interested in reproducible research. There have been great examples of replicability [1, 2] in research communication, and examples of horrifying failure of reproducibility (as described in [3]) with serious questions being raised on the ability of our current system of research communication to guarantee, or even encourage, that published research be reproducible or replicable. When we launched the call for papers for Open Research Computation in late 2010 we saw a clear need for higher standards. Computational research should stand out as an exemplar of just how reproducible research can be, yet it falls short more often than not. With modern computational tools it is entirely possible to provide packages which allow direct replication of results. It is possible to provide data and code in the form of a functional virtual machine image along with automated tests to ensure everything is working as expected. But alongside this we can support the reader’s ability to modify and re-purpose tools, to run them against new data, indeed to support efforts to deliberately break the system to identify its limitations. In short, to do what we are supposed to do as scientists – replicate, reproduce, and test the limits of our models and understanding.
- Published
- 2012
26. Supervised Self-Organizing Maps in Crystal Property and Structure Prediction
- Author
-
Willighagen, E. L., primary, Wehrens, R., additional, Melssen, W., additional, de Gelder, R., additional, and Buydens, L. M. C., additional
- Published
- 2007
- Full Text
- View/download PDF
27. Molecular Chemometrics
- Author
-
Willighagen, E. L., primary, Wehrens, R., additional, and Buydens, L. M. C., additional
- Published
- 2006
- Full Text
- View/download PDF
28. On the Use of 1H and 13C 1D NMR Spectra as QSPR Descriptors
- Author
-
Willighagen, E. L., primary, Denissen, H. M. G. W., additional, Wehrens, R., additional, and Buydens, L. M. C., additional
- Published
- 2006
- Full Text
- View/download PDF
29. Method for the computational comparison of crystal structures
- Author
-
Willighagen, E. L., primary, Wehrens, R., additional, Verwer, P., additional, de Gelder, R., additional, and Buydens, L. M. C., additional
- Published
- 2005
- Full Text
- View/download PDF
30. On the Use of 1H and 13C 1D NMR Spectra as QSPR Descriptors
- Author
-
L. Willighagen, E., M. G. W. Denissen, H., Wehrens, R., and M. C. Buydens, L.
- Abstract
Recently, 1D NMR and IR spectra have been proposed as descriptors containing 3D information. And, as such, said to be suitable for making QSAR and QSPR models where 3D molecular geometries matter, for example, in binding affinities. This paper presents a study on the predictive power of 1D NMR spectra-based QSPR models using simulated proton and carbon 1D NMR spectra. It shows that the spectra-based models are outperformed by models based on theoretical molecular descriptors and that spectra-based models are not easy to interpret. We therefore conclude that the use of such NMR spectra offers no added value.
- Published
- 2006
- Full Text
- View/download PDF
31. The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo- and Bioinformatics
- Author
-
Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., and Willighagen, E.
- Abstract
The Chemistry Development Kit (CDK) is a freely available open-source Java library for Structural Chemo- and Bioinformatics. Its architecture and capabilities as well as the development as an open-source project by a team of international collaborators from academic and industrial institutions is described. The CDK provides methods for many common tasks in molecular informatics, including 2D and 3D rendering of chemical structures, I/O routines, SMILES parsing and generation, ring searches, isomorphism checking, structure diagram generation, etc. Application scenarios as well as access information for interested users and potential contributors are given.
- Published
- 2003
32. Scientific lenses over linked data: An approach to support task specific views of the data. A vision
- Author
-
Brenninkmeijer, C., Evelo, C., Goble, C., Gray, A. J. G., Groth, P., Pettifer, S., Stevens, R., Antony Williams, and Willighagen, E. L.
33. Linking the Resource Description Framework to cheminformatics and proteochemometrics
- Author
-
Willighagen Egon L, Alvarsson Jonathan, Andersson Annsofie, Eklund Martin, Lampa Samuel, Lapins Maris, Spjuth Ola, and Wikberg Jarl ES
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
Abstract Background Semantic web technologies are finding their way into the life sciences. Ontologies and semantic markup have already been used for more than a decade in molecular sciences, but have not found widespread use yet. The semantic web technology Resource Description Framework (RDF) and related methods show to be sufficiently versatile to change that situation. Results The work presented here focuses on linking RDF approaches to existing molecular chemometrics fields, including cheminformatics, QSAR modeling and proteochemometrics. Applications are presented that link RDF technologies to methods from statistics and cheminformatics, including data aggregation, visualization, chemical identification, and property prediction. They demonstrate how this can be done using various existing RDF standards and cheminformatics libraries. For example, we show how IC50 and Ki values are modeled for a number of biological targets using data from the ChEMBL database. Conclusions We have shown that existing RDF standards can suitably be integrated into existing molecular chemometrics methods. Platforms that unite these technologies, like Bioclipse, makes this even simpler and more transparent. Being able to create and share workflows that integrate data aggregation and analysis (visual and statistical) is beneficial to interoperability and reproducibility. The current work shows that RDF approaches are sufficiently powerful to support molecular chemometrics workflows.
- Published
- 2011
- Full Text
- View/download PDF
34. New developments on the cheminformatics open workflow environment CDK-Taverna
- Author
-
Truszkowski Andreas, Jayaseelan Kalai, Neumann Stefan, Willighagen Egon L, Zielesny Achim, and Steinbeck Christoph
- Subjects
Information technology ,T58.5-58.64 ,Chemistry ,QD1-999 - Abstract
Abstract Background The computational processing and analysis of small molecules is at heart of cheminformatics and structural bioinformatics and their application in e.g. metabolomics or drug discovery. Pipelining or workflow tools allow for the Lego™-like, graphical assembly of I/O modules and algorithms into a complex workflow which can be easily deployed, modified and tested without the hassle of implementing it into a monolithic application. The CDK-Taverna project aims at building a free open-source cheminformatics pipelining solution through combination of different open-source projects such as Taverna, the Chemistry Development Kit (CDK) or the Waikato Environment for Knowledge Analysis (WEKA). A first integrated version 1.0 of CDK-Taverna was recently released to the public. Results The CDK-Taverna project was migrated to the most up-to-date versions of its foundational software libraries with a complete re-engineering of its worker's architecture (version 2.0). 64-bit computing and multi-core usage by paralleled threads are now supported to allow for fast in-memory processing and analysis of large sets of molecules. Earlier deficiencies like workarounds for iterative data reading are removed. The combinatorial chemistry related reaction enumeration features are considerably enhanced. Additional functionality for calculating a natural product likeness score for small molecules is implemented to identify possible drug candidates. Finally the data analysis capabilities are extended with new workers that provide access to the open-source WEKA library for clustering and machine learning as well as training and test set partitioning. The new features are outlined with usage scenarios. Conclusions CDK-Taverna 2.0 as an open-source cheminformatics workflow solution matured to become a freely available and increasingly powerful tool for the biosciences. The combination of the new CDK-Taverna worker family with the already available workflows developed by a lively Taverna community and published on myexperiment.org enables molecular scientists to quickly calculate, process and analyse molecular data as typically found in e.g. today's systems biology scenarios.
- Published
- 2011
- Full Text
- View/download PDF
35. Computational toxicology using the OpenTox application programming interface and Bioclipse
- Author
-
Willighagen Egon L, Jeliazkova Nina, Hardy Barry, Grafström Roland C, and Spjuth Ola
- Subjects
Medicine ,Biology (General) ,QH301-705.5 ,Science (General) ,Q1-390 - Abstract
Abstract Background Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. Findings This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. Conclusions A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers.
- Published
- 2011
- Full Text
- View/download PDF
36. OSCAR4: a flexible architecture for chemical text-mining
- Author
-
Jessop David M, Adams Sam E, Willighagen Egon L, Hawizy Lezan, and Murray-Rust Peter
- Subjects
Information technology ,T58.5-58.64 ,Chemistry ,QD1-999 - Abstract
Abstract The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on reduction of surface coupling) that permits client programmers to easily incorporate it into external applications. OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built, and its development and usage are discussed.
- Published
- 2011
- Full Text
- View/download PDF
37. Open Data, Open Source and Open Standards in chemistry: The Blue Obelisk five years on
- Author
-
O'Boyle Noel M, Guha Rajarshi, Willighagen Egon L, Adams Samuel E, Alvarsson Jonathan, Bradley Jean-Claude, Filippov Igor V, Hanson Robert M, Hanwell Marcus D, Hutchison Geoffrey R, James Craig A, Jeliazkova Nina, Lang Andrew SID, Langner Karol M, Lonie David C, Lowe Daniel M, Pansanel Jérôme, Pavlov Dmitry, Spjuth Ola, Steinbeck Christoph, Tenderholt Adam L, Theisen Kevin J, and Murray-Rust Peter
- Subjects
Information technology ,T58.5-58.64 ,Chemistry ,QD1-999 - Abstract
Abstract Background The Blue Obelisk movement was established in 2005 as a response to the lack of Open Data, Open Standards and Open Source (ODOSOS) in chemistry. It aims to make it easier to carry out chemistry research by promoting interoperability between chemistry software, encouraging cooperation between Open Source developers, and developing community resources and Open Standards. Results This contribution looks back on the work carried out by the Blue Obelisk in the past 5 years and surveys progress and remaining challenges in the areas of Open Data, Open Standards, and Open Source in chemistry. Conclusions We show that the Blue Obelisk has been very successful in bringing together researchers and developers with common interests in ODOSOS, leading to development of many useful resources freely available to the chemistry community.
- Published
- 2011
- Full Text
- View/download PDF
38. Resource description framework technologies in chemistry
- Author
-
Willighagen Egon L and Brändle Martin P
- Subjects
Information technology ,T58.5-58.64 ,Chemistry ,QD1-999 - Published
- 2011
- Full Text
- View/download PDF
39. Linked open drug data for pharmaceutical research and development
- Author
-
Samwald Matthias, Jentzsch Anja, Bouton Christopher, Kallesøe Claus, Willighagen Egon, Hajagos Janos, Marshall M, Prud'hommeaux Eric, Hassenzadeh Oktie, Pichler Elgar, and Stephens Susie
- Subjects
Information technology ,T58.5-58.64 ,Chemistry ,QD1-999 - Abstract
Abstract There is an abundance of information about drugs available on the Web. Data sources range from medicinal chemistry results, over the impact of drugs on gene expression, to the outcomes of drugs in clinical trials. These data are typically not connected together, which reduces the ease with which insights can be gained. Linking Open Drug Data (LODD) is a task force within the World Wide Web Consortium's (W3C) Health Care and Life Sciences Interest Group (HCLS IG). LODD has surveyed publicly available data about drugs, created Linked Data representations of the data sets, and identified interesting scientific and business questions that can be answered once the data sets are connected. The task force provides recommendations for the best practices of exposing data in a Linked Data representation. In this paper, we present past and ongoing work of LODD and discuss the growing importance of Linked Data as a foundation for pharmaceutical R&D data sharing.
- Published
- 2011
- Full Text
- View/download PDF
40. Towards interoperable and reproducible QSAR analyses: Exchange of datasets
- Author
-
Spjuth Ola, Willighagen Egon L, Guha Rajarshi, Eklund Martin, and Wikberg Jarl ES
- Subjects
Information technology ,T58.5-58.64 ,Chemistry ,QD1-999 - Abstract
Abstract Background QSAR is a widely used method to relate chemical structures to responses or properties based on experimental observations. Much effort has been made to evaluate and validate the statistical modeling in QSAR, but these analyses treat the dataset as fixed. An overlooked but highly important issue is the validation of the setup of the dataset, which comprises addition of chemical structures as well as selection of descriptors and software implementations prior to calculations. This process is hampered by the lack of standards and exchange formats in the field, making it virtually impossible to reproduce and validate analyses and drastically constrain collaborations and re-use of data. Results We present a step towards standardizing QSAR analyses by defining interoperable and reproducible QSAR datasets, consisting of an open XML format (QSAR-ML) which builds on an open and extensible descriptor ontology. The ontology provides an extensible way of uniquely defining descriptors for use in QSAR experiments, and the exchange format supports multiple versioned implementations of these descriptors. Hence, a dataset described by QSAR-ML makes its setup completely reproducible. We also provide a reference implementation as a set of plugins for Bioclipse which simplifies setup of QSAR datasets, and allows for exporting in QSAR-ML as well as old-fashioned CSV formats. The implementation facilitates addition of new descriptor implementations from locally installed software and remote Web services; the latter is demonstrated with REST and XMPP Web services. Conclusions Standardized QSAR datasets open up new ways to store, query, and exchange data for subsequent analyses. QSAR-ML supports completely reproducible creation of datasets, solving the problems of defining which software components were used and their versions, and the descriptor ontology eliminates confusions regarding descriptors by defining them crisply. This makes is easy to join, extend, combine datasets and hence work collectively, but also allows for analyzing the effect descriptors have on the statistical model's performance. The presented Bioclipse plugins equip scientists with graphical tools that make QSAR-ML easily accessible for the community.
- Published
- 2010
- Full Text
- View/download PDF
41. CDK-Taverna: an open workflow environment for cheminformatics
- Author
-
Zielesny Achim, Willighagen Egon L, Kuhn Thomas, and Steinbeck Christoph
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Small molecules are of increasing interest for bioinformatics in areas such as metabolomics and drug discovery. The recent release of large open access chemistry databases generates a demand for flexible tools to process them and discover new knowledge. To freely support open science based on these data resources, it is desirable for the processing tools to be open source and available for everyone. Results Here we describe a novel combination of the workflow engine Taverna and the cheminformatics library Chemistry Development Kit (CDK) resulting in a open source workflow solution for cheminformatics. We have implemented more than 160 different workers to handle specific cheminformatics tasks. We describe the applications of CDK-Taverna in various usage scenarios. Conclusions The combination of the workflow engine Taverna and the Chemistry Development Kit provides the first open source cheminformatics workflow solution for the biosciences. With the Taverna-community working towards a more powerful workflow engine and a more user-friendly user interface, CDK-Taverna has the potential to become a free alternative to existing proprietary workflow tools.
- Published
- 2010
- Full Text
- View/download PDF
42. Bioclipse 2: A scriptable integration platform for the life sciences
- Author
-
Wagener Johannes, Torrance Gilleain, Mäsak Carl, Kuhn Stefan, Eklund Martin, Berg Arvid, Alvarsson Jonathan, Spjuth Ola, Willighagen Egon L, Steinbeck Christoph, and Wikberg Jarl ES
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Contemporary biological research integrates neighboring scientific domains to answer complex questions in fields such as systems biology and drug discovery. This calls for tools that are intuitive to use, yet flexible to adapt to new tasks. Results Bioclipse is a free, open source workbench with advanced features for the life sciences. Version 2.0 constitutes a complete rewrite of Bioclipse, and delivers a stable, scalable integration platform for developers and an intuitive workbench for end users. All functionality is available both from the graphical user interface and from a built-in novel domain-specific language, supporting the scientist in interdisciplinary research and reproducible analyses through advanced visualization of the inputs and the results. New components for Bioclipse 2 include a rewritten editor for chemical structures, a table for multiple molecules that supports gigabyte-sized files, as well as a graphical editor for sequences and alignments. Conclusion Bioclipse 2 is equipped with advanced tools required to carry out complex analysis in the fields of bio- and cheminformatics. Developed as a Rich Client based on Eclipse, Bioclipse 2 leverages on today's powerful desktop computers for providing a responsive user interface, but also takes full advantage of the Web and networked (Web/Cloud) services for more demanding calculations or retrieval of data. The fact that Bioclipse 2 is based on an advanced and widely used service platform ensures wide extensibility, making it easy to add new algorithms, visualizations, as well as scripting commands. The intuitive tools for end users and the extensible architecture make Bioclipse 2 ideal for interdisciplinary and integrative research. Bioclipse 2 is released under the Eclipse Public License (EPL), a flexible open source license that allows additional plugins to be of any license. Bioclipse 2 is implemented in Java and supported on all major platforms; Source code and binaries are freely available at http://www.bioclipse.net.
- Published
- 2009
- Full Text
- View/download PDF
43. XMPP for cloud computing in bioinformatics supporting discovery and invocation of asynchronous web services
- Author
-
Willighagen Egon L, Spjuth Ola, Wagener Johannes, and Wikberg Jarl ES
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Life sciences make heavily use of the web for both data provision and analysis. However, the increasing amount of available data and the diversity of analysis tools call for machine accessible interfaces in order to be effective. HTTP-based Web service technologies, like the Simple Object Access Protocol (SOAP) and REpresentational State Transfer (REST) services, are today the most common technologies for this in bioinformatics. However, these methods have severe drawbacks, including lack of discoverability, and the inability for services to send status notifications. Several complementary workarounds have been proposed, but the results are ad-hoc solutions of varying quality that can be difficult to use. Results We present a novel approach based on the open standard Extensible Messaging and Presence Protocol (XMPP), consisting of an extension (IO Data) to comprise discovery, asynchronous invocation, and definition of data types in the service. That XMPP cloud services are capable of asynchronous communication implies that clients do not have to poll repetitively for status, but the service sends the results back to the client upon completion. Implementations for Bioclipse and Taverna are presented, as are various XMPP cloud services in bio- and cheminformatics. Conclusion XMPP with its extensions is a powerful protocol for cloud services that demonstrate several advantages over traditional HTTP-based Web services: 1) services are discoverable without the need of an external registry, 2) asynchronous invocation eliminates the need for ad-hoc solutions like polling, and 3) input and output types defined in the service allows for generation of clients on the fly without the need of an external semantics description. The many advantages over existing technologies make XMPP a highly interesting candidate for next generation online services in bioinformatics.
- Published
- 2009
- Full Text
- View/download PDF
44. Userscripts for the Life Sciences
- Author
-
Guha Rajarshi, Jiao Dazhi, Gopalakrishnan Harini, O'Boyle Noel M, Willighagen Egon L, Steinbeck Christoph, and Wild David J
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background The web has seen an explosion of chemistry and biology related resources in the last 15 years: thousands of scientific journals, databases, wikis, blogs and resources are available with a wide variety of types of information. There is a huge need to aggregate and organise this information. However, the sheer number of resources makes it unrealistic to link them all in a centralised manner. Instead, search engines to find information in those resources flourish, and formal languages like Resource Description Framework and Web Ontology Language are increasingly used to allow linking of resources. A recent development is the use of userscripts to change the appearance of web pages, by on-the-fly modification of the web content. This opens possibilities to aggregate information and computational results from different web resources into the web page of one of those resources. Results Several userscripts are presented that enrich biology and chemistry related web resources by incorporating or linking to other computational or data sources on the web. The scripts make use of Greasemonkey-like plugins for web browsers and are written in JavaScript. Information from third-party resources are extracted using open Application Programming Interfaces, while common Universal Resource Locator schemes are used to make deep links to related information in that external resource. The userscripts presented here use a variety of techniques and resources, and show the potential of such scripts. Conclusion This paper discusses a number of userscripts that aggregate information from two or more web resources. Examples are shown that enrich web pages with information from other resources, and show how information from web pages can be used to link to, search, and process information in other resources. Due to the nature of userscripts, scientists are able to select those scripts they find useful on a daily basis, as the scripts run directly in their own web browser rather than on the web server. This flexibility allows the scientists to tune the features of web resources to optimise their productivity.
- Published
- 2007
- Full Text
- View/download PDF
45. Bioclipse: an open source workbench for chemo- and bioinformatics
- Author
-
Wagener Johannes, Eklund Martin, Kuhn Stefan, Willighagen Egon L, Helmus Tobias, Spjuth Ola, Murray-Rust Peter, Steinbeck Christoph, and Wikberg Jarl ES
- Subjects
Computer applications to medicine. Medical informatics ,R858-859.7 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background There is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no sucessful attempts have been made to integrate chemo- and bioinformatics into a single framework. Results Bioclipse is an advanced workbench for resources in chemo- and bioinformatics, such as molecules, proteins, sequences, spectra, and scripts. It provides 2D-editing, 3D-visualization, file format conversion, calculation of chemical properties, and much more; all fully integrated into a user-friendly desktop application. Editing supports standard functions such as cut and paste, drag and drop, and undo/redo. Bioclipse is written in Java and based on the Eclipse Rich Client Platform with a state-of-the-art plugin architecture. This gives Bioclipse an advantage over other systems as it can easily be extended with functionality in any desired direction. Conclusion Bioclipse is a powerful workbench for bio- and chemoinformatics as well as an advanced integration platform. The rich functionality, intuitive user interface, and powerful plugin architecture make Bioclipse the most advanced and user-friendly open source workbench for chemo- and bioinformatics. Bioclipse is released under Eclipse Public License (EPL), an open source license which sets no constraints on external plugin licensing; it is totally open for both open source plugins as well as commercial ones. Bioclipse is freely available at http://www.bioclipse.net.
- Published
- 2007
- Full Text
- View/download PDF
46. The Virtual Human Platform for Safety Assessment (VHP4Safety) project: Next generation chemical safety assessment based on human data.
- Author
-
Kienhuis A, Krul C, van Engelen J, Evelo CT, Hessel E, Hoekman J, Kramer N, Krop E, Masereeuw R, Moors E, Negro SO, Piersma AH, Pieters R, Teunis M, Willighagen E, and Legler J
- Abstract
The Virtual Human Platform for Safety Assessment (VHP4Safety) project aims to build a Virtual Human Platform (VHP) to protect human health and revolutionize the safety assessment of chemicals and pharmaceuticals by transitioning from animal-based to human-based approaches. The goal of this article is to introduce the project and its interdisciplinary approach to co-creation with multiple academic, regulatory, industrial and societal partners covering the entire safety assessment knowledge chain. Three research lines drive the project: 1) building the VHP; 2) feeding the VHP with human data; and 3) implementing the VHP. The project focusses on three case studies that incorporate human relevant scenarios not included in current animal-based safety assessment strategies. The VHP is built on tools and services, including pharmacokinetic and computational models, and integrates several data sources within each case study, including data on human physiology, epidemiology, toxicokinetic and -dynamic parameters, as well as data on chemical characteristics and exposures. In addition, the VHP integrates new data generated within the project using new approach methodologies representing key events within adverse outcome pathways. Implementation of the VHP is investigated using an innovation systems approach, engaging stakeholders and organizing training and education. Central to the VHP4Safety project is our co-creative approach, which facilitated by biannual designathons and hackathons that foster active involvement of all project participants from over 30 partner organizations. By integrating technological innovations with transparency and stakeholder collaboration, the VHP4Safety project will help shape the transition to the next generation safety assessment in which animal testing becomes redundant.
- Published
- 2024
- Full Text
- View/download PDF
47. A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials.
- Author
-
Jeliazkova N, Longhin E, El Yamani N, Rundén-Pran E, Moschini E, Serchi T, Vrček IV, Burgum MJ, Doak SH, Cimpan MR, Rios-Mondragon I, Cimpan E, Battistelli CL, Bossa C, Tsekovska R, Drobne D, Novak S, Repar N, Ammar A, Nymark P, Di Battista V, Sosnowska A, Puzyn T, Kochev N, Iliev L, Jeliazkov V, Reilly K, Lynch I, Bakker M, Delpivo C, Sánchez Jiménez A, Fonseca AS, Manier N, Fernandez-Cruz ML, Rashid S, Willighagen E, D Apostolova M, and Dusinska M
- Subjects
- Software, Metadata, Nanostructures chemistry
- Abstract
Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials., (© 2024. Springer Nature Limited.)
- Published
- 2024
- Full Text
- View/download PDF
48. Governance of advanced materials: Shaping a safe and sustainable future.
- Author
-
Groenewold M, Bleeker EAJ, Noorlander CW, Sips AJAM, van der Zee M, Aitken RJ, Baker JH, Bakker MI, Bouman EA, Doak SH, Drobne D, Dumit VI, Florin MV, Fransman W, Gonzalez MM, Heunisch E, Isigonis P, Jeliazkova N, Jensen KA, Kuhlbusch T, Lynch I, Morrison M, Porcari A, Rodríguez-Llopis I, Pozuelo BM, Resch S, Säämänen AJ, Serchi T, Soeteman-Hernandez LG, Willighagen E, Dusinska M, and Scott-Fordsmand JJ
- Subjects
- Humans, Nanotechnology legislation & jurisprudence, Europe, Sustainable Development, Nanostructures
- Abstract
The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials. We emphasise the importance of establishing a European approach for risk and sustainability governance of advanced materials as soon as possible to keep up with the pace of innovation and to manage uncertainty among regulators, industry, SMEs and the public, regarding potential risks and impacts of advanced materials. Coordination of safe and sustainable advanced material research efforts, and data management according to the Findable, Accessible, Interoperable and Reusable (FAIR) principles will enhance the generation of regulatory-relevant knowledge. This knowledge is crucial to identify whether current regulatory standardised and harmonised test methods are adequate to assess advanced materials. At the same time, there is urgent need for responsible innovation beyond regulatory compliance which can be promoted through the Safe and Sustainable Innovation Approach. that combines the Safe and Sustainable by Design concept with Regulatory Preparedness, supported by a trusted environment. We further recommend consolidating all efforts and networks related to the risk and sustainability governance of advanced materials in a single, easy-to-use digital portal. Given the anticipated complexity and tremendous efforts required, we identified the need of establishing an organisational structure dedicated to aligning the fast technological developments in advanced materials with proper risk and sustainability governance. Involvement of multiple stakeholders in a trusted environment ensures a coordinated effort towards the safe and sustainable development, production, and use of advanced materials. The existing infrastructures and network of experts involved in the governance of nanomaterials would form a solid foundation for such an organisational structure., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF
49. FAIR assessment of nanosafety data reusability with community standards.
- Author
-
Ammar A, Evelo C, and Willighagen E
- Subjects
- Metadata, Risk Assessment, Nanostructures toxicity
- Abstract
Nanomaterials hold great promise for improving our society, and it is crucial to understand their effects on biological systems in order to enhance their properties and ensure their safety. However, the lack of consistency in experimental reporting, the absence of universally accepted machine-readable metadata standards, and the challenge of combining such standards hamper the reusability of previously produced data for risk assessment. Fortunately, the research community has responded to these challenges by developing minimum reporting standards that address several of these issues. By converting twelve published minimum reporting standards into a machine-readable representation using FAIR maturity indicators, we have created a machine-friendly approach to annotate and assess datasets' reusability according to those standards. Furthermore, our NanoSafety Data Reusability Assessment (NSDRA) framework includes a metadata generator web application that can be integrated into experimental data management, and a new web application that can summarize the reusability of nanosafety datasets for one or more subsets of maturity indicators, tailored to specific computational risk assessment use cases. This approach enhances the transparency, communication, and reusability of experimental data and metadata. With this improved FAIR approach, we can facilitate the reuse of nanosafety research for exploration, toxicity prediction, and regulation, thereby advancing the field and benefiting society as a whole., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
50. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability.
- Author
-
Furxhi I, Willighagen E, Evelo C, Costa A, Gardini D, and Ammar A
- Subjects
- Reproducibility of Results, Oxides, Quantitative Structure-Activity Relationship, Algorithms
- Abstract
Introduction: The current effort towards the digital transformation across multiple scientific domains requires data that is Findable, Accessible, Interoperable and Reusable (FAIR). In addition to the FAIR data, what is required for the application of computational tools, such as Quantitative Structure Activity Relationships (QSARs), is a sufficient data volume and the ability to merge sources into homogeneous digital assets. In the nanosafety domain there is a lack of FAIR available metadata., Methodology: To address this challenge, we utilized 34 datasets from the nanosafety domain by exploiting the NanoSafety Data Reusability Assessment (NSDRA) framework, which allowed the annotation and assessment of dataset's reusability. From the framework's application results, eight datasets targeting the same endpoint (i.e. numerical cellular viability) were selected, processed and merged to test several hypothesis including universal versus nanogroup-specific QSAR models (metal oxide and nanotubes), and regression versus classification Machine Learning (ML) algorithms., Results: Universal regression and classification QSARs reached an 0.86 R
2 and 0.92 accuracy, respectively, for the test set. Nanogroup-specific regression models reached 0.88 R2 for nanotubes test set followed by metal oxide (0.78). Nanogroup-specific classification models reached 0.99 accuracy for nanotubes test set, followed by metal oxide (0.91). Feature importance revealed different patterns depending on the dataset with common influential features including core size, exposure conditions and toxicological assay. Even in the case where the available experimental knowledge was merged, the models still failed to correctly predict the outputs of an unseen dataset, revealing the cumbersome conundrum of scientific reproducibility in realistic applications of QSAR for nanosafety. To harness the full potential of computational tools and ensure their long-term applications, embracing FAIR data practices is imperative in driving the development of responsible QSAR models., Conclusions: This study reveals that the digitalization of nanosafety knowledge in a reproducible manner has a long way towards its successful pragmatic implementation. The workflow carried out in the study shows a promising approach to increase the FAIRness across all the elements of computational studies, from dataset's annotation, selection, merging to FAIR modeling reporting. This has significant implications for future research as it provides an example of how to utilize and report different tools available in the nanosafety knowledge system, while increasing the transparency of the results. One of the main benefits of this workflow is that it promotes data sharing and reuse, which is essential for advancing scientific knowledge by making data and metadata FAIR compliant. In addition, the increased transparency and reproducibility of the results can enhance the trustworthiness of the computational findings., Competing Interests: Declaration of Competing Interest No potential conflict of interest was reported by the authors., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.