Christelle De La Fouchardiere, Arnaud Hocquelet, Véronique Vendrely, Emilie Barbier, Louis-Arnaud Bazire, Thomas Charleux, Meher Ben Abdelghani, Xavier Mirabel, Ariane Darut-Jouve, Wulfran Cacheux, Thomas Aparicio, Delphine Argo-Leignel, Nicolas Giraud, Pierre-Luc Etienne, Nicolas Magné, Hervé Trillaud, Olivier Saut, Gilles Breysacher, Philippe Ronchin, Alexandre Tessier, Claire Lemanski, Côme Lepage, Astrid Lièvre, Hôpital Haut-Lévêque [CHU Bordeaux], CHU Bordeaux [Bordeaux], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Modélisation Mathématique pour l'Oncologie (MONC), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Institut Bergonié [Bordeaux], UNICANCER-UNICANCER-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Hopital Saint-Louis [AP-HP] (AP-HP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Centre Azuréen de Cancérologie [Mougins, France], Institut Curie [Paris], Fédération Francophone de Cancérologie Digestive (FFCD), Institut du Cancer de Montpellier (ICM), Centre Régional de Lutte contre le Cancer Oscar Lambret [Lille] (UNICANCER/Lille), Université Lille Nord de France (COMUE)-UNICANCER, Centre Armoricain de Radiothérapie, d'Imagerie médicale et d'Oncologie [Plérin, Saint-Brieuc] (CARIO), Hôpital Sud [CHU Rennes], CHU Pontchaillou [Rennes], Hôpital privé Pays de Savoie, Institut de Cancérologie de Bourgogne, Centre Léon Bérard [Lyon], Hôpitaux Civils de Colmar, Groupe Hospitalier Bretagne Sud (GHBS), Centre Hospitalier Annecy-Genevois [Saint-Julien-en-Genevois], Institut de Cancérologie de la Loire Lucien Neuwirth, Centre Hospitalier Universitaire de Saint-Etienne (CHU de Saint-Etienne), Institut de Cancérologie de Strasbourg Europe (ICANS), CHU Dijon, Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Institut Bergonié [Bordeaux], Université de Lille-UNICANCER, and Centre Hospitalier Universitaire de Saint-Etienne [CHU Saint-Etienne] (CHU ST-E)
Simple Summary Exclusive chemo-radiotherapy (CRT) is the standard treatment for non-metastatic anal squamous cell carcinomas. Identifying novel prognostic factors could help to improve CRT outcomes, notably for locally advanced diseases where relapses still occur in around 35% of patients. In this study, we aim to assess the potential value of a pre-therapeutic MRI radiomic analysis added to standard clinical variables in order to build a logistic regression model predicting 2-year recurrence after CRT. In a population of 82 patients randomly divided in training (n = 54) and testing (n = 28) sets, after selection of optimal variables, a model using two radiomic (FirstOrder_Entropy and GLCM_JointEnergy) and two clinical (tumor size and CRT length) features was able to predict the 2-year recurrence with good performances in the testing set. Radiomic biomarkers provided valuable additional and independent information added to clinical data, and could help contribute to identify high risk patients amenable to treatment intensification with view of personalized medicine. Abstract Purpose: Chemo-radiotherapy (CRT) is the standard treatment for non-metastatic anal squamous cell carcinomas (ASCC). Despite excellent results for T1-2 stages, relapses still occur in around 35% of locally advanced tumors. Recent strategies focus on treatment intensification, but could benefit from a better patient selection. Our goal was to assess the prognostic value of pre-therapeutic MRI radiomics on 2-year disease control (DC). Methods: We retrospectively selected patients with non-metastatic ASCC treated at the CHU Bordeaux and in the French FFCD0904 multicentric trial. Radiomic features were extracted from T2-weighted pre-therapeutic MRI delineated sequences. After random division between training and testing sets on a 2:1 ratio, univariate and multivariate analysis were performed on the training cohort to select optimal features. The correlation with 2-year DC was assessed using logistic regression models, with AUC and accuracy as performance gauges, and the prediction of disease-free survival using Cox regression and Kaplan-Meier analysis. Results: A total of 82 patients were randomized in the training (n = 54) and testing sets (n = 28). At 2 years, 24 patients (29%) presented relapse. In the training set, two clinical (tumor size and CRT length) and two radiomic features (FirstOrder_Entropy and GLCM_JointEnergy) were associated with disease control in univariate analysis and included in the model. The clinical model was outperformed by the mixed (clinical and radiomic) model in both the training (AUC 0.758 versus 0.825, accuracy of 75.9% versus 87%) and testing (AUC 0.714 versus 0.898, accuracy of 78.6% versus 85.7%) sets, which led to distinctive high and low risk of disease relapse groups (HR 8.60, p = 0.005). Conclusion: A mixed model with two clinical and two radiomic features was predictive of 2-year disease control after CRT and could contribute to identify high risk patients amenable to treatment intensification with view of personalized medicine.