250 results on '"Xavier Wallart"'
Search Results
2. 100 nm AlSb/InAs HEMT for Ultra-Low-Power Consumption, Low-Noise Applications
- Author
-
Cyrille Gardès, Sonia Bagumako, Ludovic Desplanque, Nicolas Wichmann, Sylvain Bollaert, François Danneville, Xavier Wallart, and Yannick Roelens
- Subjects
Technology ,Medicine ,Science - Abstract
We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/fmax of 100/125 GHz together with minimum noise figure NFmin=0.5 dB and associated gain Gass=12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.
- Published
- 2014
- Full Text
- View/download PDF
3. Vertical and lateral manipulation of single Cs atoms on the semiconductor InAs(111)A
- Author
-
Rian A. M. Ligthart, Cristophe Coinon, Ludovic Desplanque, Xavier Wallart, Ingmar Swart
- Subjects
Physics ,QC1-999 - Abstract
The tip of the scanning tunneling microscope can be used to position atoms and molecules on surfaces with atomic scale precision. Here, we report the controlled vertical and lateral manipulation of single Cs atoms on the InAs(111)A surface. The Cs adatom adsorbs on the In-vacancy site of the InAs(111)A—(2x2) surface reconstruction. Lateral manipulation is possible in all directions over the surface, not just along high-symmetry directions. Both pushing and pulling modes were observed in the height profile of the tip. We assembled two artificial structures, demonstrating the reliability of the manipulation procedures. Structures remained intact to a temperature of at least 44 K.
- Published
- 2024
- Full Text
- View/download PDF
4. Novel Quantum Dot Based Memories with Many Days of Storage Time : Last Steps towards the Holy Grail?
- Author
-
Dieter Bimberg, Thomas Mikolajick, and Xavier Wallart
- Published
- 2019
- Full Text
- View/download PDF
5. Indoor 100 Gbit/s THz data link in the 300 GHz band using fast photodiodes.
- Author
-
Vinay K. Chinni, Malek Zegaoui, Christophe Coinon, Xavier Wallart, Emilien Pevtavit, Jean-François Larnpin, Pascal Szriftgiser, Mohamed Zaknoune, and Guillaume Ducournau
- Published
- 2018
- Full Text
- View/download PDF
6. Photocatalytic Partial Oxidation of Methane to Carbon Monoxide and Hydrogen over CIGS Solar Cell
- Author
-
Chunyang Dong, Di Hu, Karima Ben Tayeb, Pardis Simon, Ahmed Addad, Martine Trentesaux, Danilo Oliveira de Souza, Sergei Chernyak, Deizi V. Peron, Amelle Rebai, Jean-Francois Guillemoles, Xavier Wallart, Bruno Grandidier, Andrei Y. Khodakov, Negar Naghavi, Vitaly V. Ordomsky, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut Michel Eugène Chevreul - FR 2638 (IMEC), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Elettra Sincrotrone Trieste, Institut Photovoltaïque d’Ile-de-France (UMR) (IPVF), École polytechnique (X)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-TOTAL FINA ELF-EDF (EDF)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Photovoltaïque d’Ile-de-France (ITE) (IPVF)-Air Liquide [Siège Social], Institut Photovoltaïque d’Ile-de-France (ITE) (IPVF), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Physique - IEMN (PHYSIQUE - IEMN), Eco-Efficient Products & Processes Laboratory (E2P2L), RHODIA-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), The authors gratefully acknowledge the support of the French National Research Agency (SolarMethaCell project). We are grateful to the Elettra and Soleil synchrotrons for the use of beamtime., Renatech Network, and ANR-22-CE05-0019,SolarMethaCell,Conversion du méthane en molécules de plate-forme dans des conditions ambiantes à l'aide de cellules solaires(2022)
- Subjects
[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Process Chemistry and Technology ,Photocatalysis ,Oxidation ,CIGS ,[CHIM.CATA]Chemical Sciences/Catalysis ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,Syngas ,Methane ,Catalysis ,General Environmental Science - Abstract
International audience; Methane valorization is one of the main challenges in the modern chemical industry. However, existing processes require high reaction temperatures. The alternative photocatalytic routes for methane valorization at ambient conditions would be highly attractive. Today, photovoltaic (PV) generation of electricity is one of the main sources of renewable energy. PV absorbers could be excellent candidates for photochemical applications. Herein, we report selective methane photocatalytic oxidation at ambient conditions into CO and H2 by conventional Cu(In,Ga)Se2 (CIGS) absorbers used in solar cells. A thin film of CIGS coated over Mo exhibits exceptional performance in methane partial oxidation to CO and H2 with a stable CO productivity of 2.4 mmol per g of CIGS and a selectivity to CO of over 80 %. The reaction proceeds via the facile dissociation of methane into disordered carbon and hydrogen over CIGS surface with subsequent regeneration of the surface by partial oxidation of carbon into CO.
- Published
- 2023
- Full Text
- View/download PDF
7. Direct measurement of band offsets on selective area grown In0.53Ga0.47As/InP heterojunction with multiple probe scanning tunneling microscopy
- Author
-
Nemanja Peric, Corentin Durand, Maxime Berthe, Yan Lu, Kekeli N'Konou, Roland Coratger, Isabelle Lefebvre, Philipp Ebert, Louis Biadala, Ludovic Desplanque, Xavier Wallart, B. Grandidier, Physique - IEMN (PHYSIQUE - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Équipe Matériaux et Procédés pour la Nanoélectronique (LAAS-MPN), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Plateforme de Caractérisation Multi-Physiques - IEMN (PCMP - IEMN), Forschungszentrum Jülich GmbH, Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), This study was financially supported by the European Community's H2020 Program (Grant No. PITN-GA-2016-722176, 'Indeed' Project), the EQUIPEX program Excelsior (Grant No. ANR-11-EQPX-0015), the IEMN CMNF and PCMP-PCP platforms of the RENATECH network, and the Deutsche Forschungsgemeinschaft (Grant No. 390247238)., PCMP PCP, Renatech Network, CMNF, ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), and European Project: 722176,H2020, H2020-MSCA-ITN-2016,INDEED(2017)
- Subjects
Physics and Astronomy (miscellaneous) ,ddc:530 ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics - Abstract
The knowledge of the band alignment in semiconductor heterostructures is crucial, as it governs carrier confinement with many impacts on the performances of devices. By controlling the direction of the current flow in in-plane In0.53Ga0.47As/InP heterostructure nanowires, either horizontally along the nanowires or vertically into the InP substrate with low temperature multiple-probe tunneling spectroscopy, a direct measurement of the band offsets at the buried In0.53Ga0.47As/InP heterointerface is performed. Despite the unavoidable processing steps involved in selective area epitaxy, conduction and valence band offsets of 0.21 ± 0.01 and 0.40 ± 0.01 eV are, respectively, found, indicating the formation of an interface with a quality comparable to two-dimensional In0.53Ga0.47As/InP heterostructures.
- Published
- 2022
- Full Text
- View/download PDF
8. Engineering a Robust Flat Band in III–V Semiconductor Heterostructures
- Author
-
Xavier Wallart, Daniel Vanmaekelbergh, Gilles Patriarche, David Troadec, Guillaume Fleury, Bruno Grandidier, Christophe Delerue, Nathali Alexandra Franchina Vergel, Maxime Berthe, Ludovic Desplanque, C. Coinon, Yannick Lambert, Tao Xu, François Vaurette, Davide Sciacca, Dmitri A. Yarekha, L. Christiaan Post, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Debye Institute for Nanomaterials Science, Utrecht University [Utrecht], Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Sino-European School of Technology, University of Shanghai [Shanghai], Physique - IEMN (PHYSIQUE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Dutch Research Council (NWO Chemistry - Toppunt 'Superficial superstructures'), Natural Science Foundation of Shanghai (19ZR1419500), Renatech Network, PCMP PCP, ANR-16-CE24-0007,Dirac-III-V,Super-réseau d'antipoints de Dirac pour les électrons dans les semiconducteurs III-V(2016), ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), ANR-17-CE09-0021,GERMANENE,Croissance de germanene sur substrats à bande interdite(2017), European Project: FIRST STEP, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Physique-IEMN (PHYSIQUE-IEMN), and Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN)
- Subjects
Materials science ,tight binding calculations ,quantum well ,flat band ,Scanning tunneling spectroscopy ,band engineering ,Bioengineering ,02 engineering and technology ,Electron ,Lattice constant ,General Materials Science ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Electronic band structure ,Lithography ,ComputingMilieux_MISCELLANEOUS ,Quantum well ,block copolymer lithography ,business.industry ,Mechanical Engineering ,Heterojunction ,disorder ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Two-dimensional lattice ,Quantum dot ,scanning tunneling spectroscopy ,Optoelectronics ,III−V semiconductor ,0210 nano-technology ,business - Abstract
Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.
- Published
- 2020
- Full Text
- View/download PDF
9. Thermal and electrical cross-plane conductivity at the nanoscale in poly(3,4-ethylenedioxythiophene):trifluoromethanesulfonate thin films
- Author
-
Kirill Kondratenko, David Guérin, Xavier Wallart, Stéphane Lenfant, Dominique Vuillaume, Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), We thank the financial support from French National Research Agency (ANR): project HARVESTERS, ANR-16-CE05-0029. The IEMN facilities are partly supported by Renatech. We thank D. Deresmes for his valuable help with the SThM instrument, Renatech Network, PCMP PCP, and ANR-16-CE05-0029,Harvesters,Récuperer l'energie thermique de l'environnement à l'aide d'un générateur thermoélectrique polymère pour alimenter un capteur autonome(2016)
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Materials Science ,Applied Physics (physics.app-ph) ,Physics - Applied Physics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
International audience; Cross-plane electrical and thermal transport in thin films of a conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) stabilized with trifluoromethanesulfonate (OTf) is investigated in this study. We explore their electrical properties by conductive atomic force microscopy (C-AFM), which reveals the presence of highly conductive nano-domains. Thermal conductivity in cross-plane direction is measured with Null-Point scanning thermal microscopy (NP-SThM): PEDOT:OTf indeed demonstrates non-negligible electronic contribution to the thermal transport. We further investigate the correlation between electrical and thermal conductivity by applying post-treatment: chemical reduction (de-doping) for the purpose of lowering charge carrier concentration and hence, electrical conductivity and acid treatment (over-doping) to increase the latter. From our measurements, we find a vibrational thermal conductivity of 0.34±0.04 W m-1 K-1. From the linear dependence or the electronic contribution of thermal conductivity vs. the electronic conductivity (Widemann-Franz law), we infer a Lorenz number 6 times larger than the classical Sommerfeld value as also observed in many organic materials for in-plane thermal transport. Applying the recently proposed molecular Widemann-Franz law, we deduced a reorganization energy of 0.53±0.06 eV
- Published
- 2022
- Full Text
- View/download PDF
10. Quantum Dot Acceptors in Two-Dimensional Epitaxially Fused PbSe Quantum Dot Superlattices
- Author
-
Vincent Notot, Willem Walravens, Maxime Berthe, Nemanja Peric, Ahmed Addad, Xavier Wallart, Christophe Delerue, Zeger Hens, Bruno Grandidier, Louis Biadala, Physique - IEMN (PHYSIQUE - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Universiteit Gent = Ghent University (UGENT), Plateforme de Caractérisation Multi-Physiques - IEMN (PCMP - IEMN), Unité Matériaux et Transformations - UMR 8207 (UMET), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Ghent University (GOA 01G01019), This study was financially supported by the European Community’s H2020 Program (Grant No. PITN-GA-2016-722176, 'Indeed' Project), the EQUIPEX program Excelsior (Grant No. ANR-11-EQPX-0015), IEMN PCMP-PCP platform of the RENATECH network, the Agence National de la Recherche (Grant No. ANR-19-CE09-0022, 'TROPICAL' Project), and I-SITE ('PRIVET' project). Z.H. acknowledges funding from Ghent University (GOA 01G01019)., Renatech Network, PCMP PCP, ANR-19-CE09-0022,TROPICAL,Propriétés électronique et optique de puits quantiques colloidaux à l'échelle individuelle(2019), ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), and European Project: 722176,H2020, H2020-MSCA-ITN-2016,INDEED(2017)
- Subjects
SPECTROSCOPY ,SURFACE ,General Engineering ,General Physics and Astronomy ,quantum dot superlattice ,DEFECTS ,doping ,electronic coupling ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Chemistry ,Condensed Matter::Materials Science ,STATES ,NANOCRYSTAL SOLIDS ,CHARGE-TRANSPORT ,scanning tunneling microscopy ,General Materials Science ,nanocrystal assemblies ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,defects - Abstract
International audience; Oriented attachment of colloidal quantum dots allows the growth of two-dimensional crystals by design, which could have striking electronic properties upon progress on manipulating their conductivity. Here, we explore the origin of doping in square and epitaxially fused PbSe quantum dot superlattices with low-temperature scanning tunneling microscopy and spectroscopy. Probing the density of states of numerous individual quantum dots reveals an electronic coupling between the hole ground states of the quantum dots. Moreover, a small amount of quantum dots shows a reproducible deep level in the band gap, which is not caused by structural defects in the connections but arises from unpassivated sites at the {111} facets. Based on semiconductor statistics, these distinct defective quantum dots, randomly distributed in the superlattice, trap electrons, releasing a concentration of free holes, which is intimately related to the interdot electronic coupling. They act as acceptor quantum dots in the host quantum dot lattice, mimicking the role of dopant atoms in a semiconductor crystal.
- Published
- 2022
- Full Text
- View/download PDF
11. Molecular beam epitaxial growth of multilayer 2D-boron nitride on Ni substrates from borazine and plasma-activated nitrogen
- Author
-
Jawad Hadid, Ivy Colambo, Jose Avila, Alexandre Plaud, Christophe Boyaval, Dominique Deresmes, Nicolas Nuns, Pavel Dudin, Annick Loiseau, Julien Barjon, Xavier Wallart, Dominique Vignaud, EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), University of the Philippines Los Baños (UP Los Baños), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, ONERA, CNRS, Laboratoire d'étude des microstructures (LEM), ONERA-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Plateforme de Caractérisation Multi-Physiques - IEMN (PCMP - IEMN), Institut des Molécules et de la Matière Condensée de Lille (IMMCL), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Institut Michel Eugène Chevreul - FR 2638 (IMEC), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ONERA, Université Paris Saclay [Châtillon], ONERA-Université Paris-Saclay, The financial supports by the 2DHetero FLAG-ERA project and the French RENATECH network are greatly acknowledged. The authors thanks S. Ben Salk for providing an exfoliated hBN sample., Renatech Network, CMNF, PCMP PCP, and ANR-19-GRF1-0007,2DHetero,hBN/Graphene 2D Heterostructures: from scalable growth to integration(2019)
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Bioengineering ,General Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
2D boron nitride (2D-BN) was synthesized by gas-source molecular beam epitaxy on polycrystalline and monocrystalline Ni substrates using gaseous borazine and active nitrogen generated by a remote plasma source. The excess of nitrogen atoms allows to overcome the thickness self-limitation active on Ni when using borazine alone. The nucleation density and the shape of the 2D-BN domains are clearly related to the Ni substrate preparation and to the growth parameters. Based on spatially-resolved photoemission spectroscopy and on the detection of the π plasmon peak, we discuss the origin of the N1s and B1s components and their relationship with an electronic coupling at the interface. After optimization of the growth parameters, a full 2D-BN coverage is obtained, although the material thickness is not evenly distributed. The 2D-BN presents a granular structure on (111) oriented Ni grains, showing a rather poor cristallographic quality. On the contrary, high quality 2D-BN is found on (101) and (001) Ni grains, where triangular islands are observed whose lateral size is limited to ∼20 μm.
- Published
- 2022
- Full Text
- View/download PDF
12. 75 nm gate length PHEMT with f max = 800 GHz using asymmetric gate recess: RF and noise investigation
- Author
-
C. Coinon, N. Wichmann, Sylvie Lepilliet, Sylvain Bollaert, M. Samnouni, Xavier Wallart, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Plateforme de Caractérisation Multi-Physiques - IEMN (PCMP - IEMN), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), This work was developed in the Institute of Electronic Microelectronic and Nanotechnology (IEMN) cleanroom, a part of the French National Fabrication Network (RENATECH)., PCMP CHOP, Renatech Network, Université catholique de Lille (UCL)-Université catholique de Lille (UCL), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
- Subjects
010302 applied physics ,Physics ,Noise measurement ,Oscillation ,Transistor ,High-electron-mobility transistor ,Noise figure ,small-signal equivalent circuit (SSEC) ,01 natural sciences ,Noise (electronics) ,Cutoff frequency ,Electronic, Optical and Magnetic Materials ,law.invention ,high-electron mobility transistor (HEMT) ,noise figure (NF) ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,chemistry ,law ,0103 physical sciences ,Indium phosphide ,Asymmetric gate recess ,Electrical and Electronic Engineering ,Atomic physics - Abstract
We report a high maximum frequency of oscillation ( ${f} _{\text {max}}$ ) and a current-gain cutoff frequency ( ${f} _{\text {T}}$ ) of 800 and 260 GHz, respectively, with pseudomorphic high-electron mobility transistor (PHEMT), using an InGaAs/InAs composite channel and an asymmetric gate recess. This result was achieved with long gate length ${L} _{\text {G}} = {75}$ nm. The RF small signal equivalent circuit (SSEC) was extracted up to 110 GHz. Moreover, noise parameters extraction gives a minimum noise figure (NFmin) of 0.8 dB (with associated gain ${G} _{\text {ass}} = {16}$ dB) and 1.8 dB (with associated gain ${G} _{\text {ass}} = {11.6}$ dB) at 40 and 94 GHz, respectively. In this study, the gate leakage current was considered in the SSEC of the transistor ( ${g} _{\text {gf}}$ and ${g} _{\text {df}}$ ) and for extraction of the noise parameters.
- Published
- 2021
- Full Text
- View/download PDF
13. Conductance switching of azobenzene-based self-assembled monolayers on cobalt probed by UHV conductive-AFM
- Author
-
Xavier Wallart, Thierry Melin, Jérôme Cornil, Imane Arbouch, Louis Thomas, Stéphane Lenfant, Colin Van Dyck, Dominique Vuillaume, David Guerin, Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Physique - IEMN (PHYSIQUE - IEMN), Renatech Network, PCMP PCP, ANR-17-CE24-0004,SPINFUN,Spintronique à base de molécule fonctionnelles(2017), and Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
- Subjects
education.field_of_study ,Materials science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Photoswitch ,Population ,FOS: Physical sciences ,Conductance ,02 engineering and technology ,Conductive atomic force microscopy ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Crystallography ,chemistry.chemical_compound ,Azobenzene ,chemistry ,Covalent bond ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Molecule ,General Materials Science ,0210 nano-technology ,education ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Cis–trans isomerism - Abstract
We report the formation of self-assembled monolayers of a molecular photoswitch (azobenzene-bithiophene derivative, AzBT) on cobalt via a thiol covalent bond. We study the electrical properties of the molecular junctions formed with the tip of a conductive atomic force microscope under ultra-high vacuum. The statistical analysis of the current-voltage curves shows two distinct states of the molecule conductance, suggesting the coexistence of both the trans and cis azobenzene isomers on the surface. The cis isomer population (trans isomer) increases (decreases) upon UV light irradiation. The situation is reversed under blue light irradiation. The experiments are confronted to first-principle calculations performed on the molecular junctions with the Non-Equilibrium Green's Function formalism combined with Density Functional Theory (NEGF/DFT). The theoretical results consider two different molecular orientations for each isomer. Whereas the orientation does not affect the conductance of the trans isomer, it significantly modulates the conductance of the cis isomer and the resulting conductance ON/OFF ratio of the molecular junction. This helps identifying the molecular orientation at the origin of the observed current differences between the trans and cis forms. The ON state is associated to the trans isomer irrespective of its orientation in the junction, while the OFF state is identified as a cis isomer with its azobenzene moiety folded upward with respect to the bithiophene core. The experimental and calculated ON/OFF conductance ratios have a similar order of magnitude. This conductance ratio seems reasonable to make these Co-AzBT molecular junctions a good test-bed to further explore the relationship between the spin-polarized charge transport, the molecule conformation and the molecule-Co spinterface., Full manuscript and supporting information
- Published
- 2021
- Full Text
- View/download PDF
14. Pushing the limit of lithography for patterning two-dimensional lattices in III-V semiconductor quantum wells
- Author
-
Tao Xu, Yannick Lambert, Bruno Grandidier, C. Coinon, N. A. Franchina Vergel, Christophe Delerue, Guillaume Fleury, C. Post, Xavier Wallart, Daniel Vanmaekelbergh, Dmitri A. Yarekha, T.S. Kulmala, François Vaurette, Ludovic Desplanque, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Physique - IEMN (PHYSIQUE - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), This work was supported by the French National Research Agency (ANR-16-CE24-0007-01 Dirac III-V), the RENATECH network, the H2020 program (ERC Advanced Grant 692691-'FIRST STEP'), the Dutch Research Council (NWO Chemistry - Toppunt 'Superficial superstructures') and the Natural Science Foundation of Shanghai (19ZR1419500)., Renatech Network, PCMP PCP, ANR-16-CE24-0007,Dirac-III-V,Super-réseau d'antipoints de Dirac pour les électrons dans les semiconducteurs III-V(2016), European Project: FIRST STEP, Université catholique de Lille (UCL)-Université catholique de Lille (UCL), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
- Subjects
Materials science ,Lithography ,III-V semiconductors ,InGaAs ,Scattering ,Condensed Matter::Materials Science ,[SPI]Engineering Sciences [physics] ,Lattice constant ,honeycomb ,Lattice (order) ,Honeycomb ,Physics::Atomic Physics ,Quantum well ,In0.53Ga0.47As ,business.industry ,Nanoperforation ,Conical surface ,Lattices ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Semiconductor ,Quantum wells ,Optoelectronics ,two-dimensional lattices ,business ,Thermal scanning probe lithography - Abstract
International audience; Building two-dimensional lattices in semiconductor quantum-wells offers the prospect to design distinct energy-momentum dispersions, including conical intersections and nondispersive bands. Here, we compare three lithographic patterning methods, e-beam lithography, block copolymer lithography and thermal scanning probe lithography to produce a honeycomb lattice in an In0.53Ga0.47As quantum well. We weigh up the pros and cons of each method to reach lattice constants smaller than 20 nm with a minimum of dispersion in the pore size.
- Published
- 2021
- Full Text
- View/download PDF
15. Gate length dependent transport properties of in-plane core-shell nanowires with raised contacts
- Author
-
David Troadec, Alexandre Bucamp, Sylvie Lepilliet, C. Coinon, Ludovic Desplanque, Xavier Wallart, Gilles Patriarche, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Renatech Network, PCMP CHOP, and Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN)
- Subjects
Electron mobility ,Materials science ,Passivation ,Nanowire ,02 engineering and technology ,010402 general chemistry ,selective area growth ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,Effective mass (solid-state physics) ,molecular beam epitaxy ,General Materials Science ,Electrical and Electronic Engineering ,Ohmic contact ,ComputingMilieux_MISCELLANEOUS ,business.industry ,Doping ,effective electron mobility ,core-shell nanowire ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Semiconductor ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
Three-dimensional (3D) nanoscale crystal shaping has become essential for the precise design of advanced electronic and quantum devices based on electrically gated transport. In this context, III-V semiconductor-based nanowires with low electron effective mass and strong spin-orbit coupling are particularly investigated because of their exceptional quantum transport properties and the good electrostatic control they provide. Among the main challenges involved in the processing of these nanodevices are (i) the management of the gate stack which requires ex-situ passivation treatment to reduce the density of traps at the oxide/semiconductor interface, (ii) the ability to get good ohmic contacts for source and drain electrodes and (iii) the scalability and reliability of the process for the fabrication of complex architectures based on nanowire networks. In this paper, we show that selective area molecular beam epitaxy of in-plane InGaAs/InP core-shell nanowires with raised heavily doped source and drain contacts can address these different issues. Electrical characterization of the devices down to 4 K reveals the positive impact of the InP shell on the gate electrostatic control and effective electron mobility. Although comparable to the best reported values for In(Ga)As nanostructures grown on InP, this latter is severely reduced for sub-100 nm channel highlighting remaining issue to reach the ballistic regime.
- Published
- 2020
- Full Text
- View/download PDF
16. Structural determination of bilayer graphene on SiC(0001) using synchrotron radiation photoelectron diffraction
- Author
-
Xavier Wallart, S. Godey, David Phillip Woodruff, Ivy Razado-Colambo, Maria C. Asensio, D. Vignaud, and José Avila
- Subjects
Diffraction ,TP ,Materials science ,Stacking ,Synchrotron radiation ,lcsh:Medicine ,02 engineering and technology ,Kinetic energy ,01 natural sciences ,Molecular physics ,Article ,law.invention ,law ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,010306 general physics ,lcsh:Science ,QC ,Multidisciplinary ,Valence (chemistry) ,Graphene ,Scattering ,lcsh:R ,021001 nanoscience & nanotechnology ,lcsh:Q ,0210 nano-technology ,Bilayer graphene - Abstract
In recent years there has been growing interest in the electronic properties of ‘few layer’ graphene films. Twisted layers, different stacking and register with the substrate result in remarkable unconventional couplings. These distinctive electronic behaviours have been attributed to structural differences, even if only a few structural determinations are available. Here we report the results of a structural study of bilayer graphene on the Si-terminated SiC(0001) surface, investigated using synchrotron radiation-based photoelectron diffraction and complemented by angle-resolved photoemission mapping of the electronic valence bands. Photoelectron diffraction angular distributions of the graphene C 1s component have been measured at different kinetic energies and compared with the results of multiple scattering simulations for model structures. The results confirm that bilayer graphene on SiC(0001) has a layer spacing of 3.48 Å and an AB (Bernal) stacking, with a distance between the C buffer layer and the first graphene layer of 3.24 Å. Our work generalises the use of a versatile and precise diffraction method capable to shed light on the structure of low-dimensional materials.
- Published
- 2018
- Full Text
- View/download PDF
17. Molecular beam epitaxial growth of hexagonal boron nitride on Ni foils
- Author
-
Nicolas Nuns, Jawad Hadid, Ivy R. Colambo, José Avila, Pavel Dudin, Christophe Boyaval, Xavier Wallart, D. Vignaud, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Inst. Math. Sci. Phys., Univ. of the Philippines Los Banos, Laguna 4031 Philippines, Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Institut Michel Eugène Chevreul - FR 2638 (IMEC), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), The financial supports by the 2DHetero FLAG-ERA project and the French RENATECH network are greatly acknowledged., Renatech Network, Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), and Université d'Artois (UA)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centrale Lille Institut (CLIL)
- Subjects
Materials science ,Photoemission spectroscopy ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Substrate (electronics) ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,molecular beam epitaxy ,Borazine ,General Materials Science ,hexagonal boron nitride ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Boron ,photoemission spectroscopy ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Nitrogen ,0104 chemical sciences ,chemistry ,Mechanics of Materials ,Boron nitride ,Crystallite ,0210 nano-technology ,Molecular beam epitaxy - Abstract
Hexagonal boron nitride (h-BN) was synthesized by molecular beam epitaxy on polycrystalline Ni foils using borazine (B3N3H6) as precursor. Our photoemission analysis shows that several components of boron and nitrogen are detected, suggesting the complex nature of the bonds noticeably at the h-BN/Ni interface. The BN thickness was estimated by photoemission and the BN distribution by time-of-flight secondary ion mass spectroscopy. Due to the catalytic effect of the Ni substrate, this thickness is self-limited in the range 1–2 layers regardless of the borazine dose. A spatially resolved photoemission study was carried out before and after transfer of the h-BN on a Si substrate. It shows that a strong electronic coupling exists at the interface between h-BN and polycrystalline Ni, not only for (111) grains, which disappears after transfer on Si. In addition, we highlight the importance of detecting π plasmons in the photoemission spectra to confirm the hexagonal nature of BN.
- Published
- 2021
- Full Text
- View/download PDF
18. Threading dislocation free GaSb nanotemplates grown by selective molecular beam epitaxy on GaAs (001) for in-plane InAs nanowire integration
- Author
-
David Troadec, Ludovic Desplanque, M Fahed, Xavier Wallart, and Gilles Patriarche
- Subjects
010302 applied physics ,Diffraction ,Materials science ,business.industry ,Nanowire ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Epitaxy ,01 natural sciences ,Inorganic Chemistry ,Crystallography ,In plane ,Full width at half maximum ,Transmission electron microscopy ,0103 physical sciences ,Materials Chemistry ,Optoelectronics ,Threading (protein sequence) ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
The growth of in plane highly mismatched GaSb nanotemplates free of threading dislocations on GaAs (001) substrate is demonstrated using selective area growth. We report a detailed comparison of the crystalline quality of GaSb elaborated either as 2D layers or selectively grown inside 100 nm wide stripes directed along [110] or [1–10]. By means of transmission electron microscopy, we show that the GaSb layer grown on a bare substrate contains an important density of threading dislocations, while the one grown inside nano-openings is free from threading dislocations. Moreover, we demonstrate that the GaSb layers in both growth modes are relaxed through a Lomer dislocation network at the interface, which is characterized using the full width at half maximum of the GaSb X-ray diffraction peak for different reflections. Finally, we demonstrate that these GaSb nanotemplates can be used for subsequent epitaxial growth of high structural quality strained InAs nanowires.
- Published
- 2017
- Full Text
- View/download PDF
19. Generation of mW Level in the 300-GHz Band Using Resonant-Cavity-Enhanced Unitraveling Carrier Photodiodes
- Author
-
Alexandre Beck, P. Latzel, Maximilien Billet, Jean-François Lampin, Xavier Wallart, Emilien Peytavit, Mohammed Zaknoune, Mathias Vanwolleghem, Sara Bretin, C. Coinon, Guillaume Ducournau, Fabio Pavanello, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), Photonique THz - IEMN (PHOTONIQUE THz - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), French Defense Agency 'DGA' (Direction generale de l'armement), ITN 'MITEPHO' Marie-Curie program, French Agence Nationale de la Recherche (ANR) 'COM'TONIQ' GrantFrench National Research Agency (ANR) [ANR-13-INFR-0011-01], Lille University, Institute of Electronics, Microelectronics and Nanotechnology (RF/MEMS Characterization Center, Nanofab platform), CNRSCentre National de la Recherche Scientifique (CNRS)European Commission, 'RENATECH' (French nano-fabrication network), French 'Programmes d'investissement d'avenir' EquipexFrench National Research Agency (ANR) [FLUX 0017], ExCELSiOR project, 'Hauts de France' Regional Council, FEDER through the CPER 'Photonics for Society', Renatech Network, ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), ANR-13-INFR-0011,COM'TONIQ,COMmunications quasi-optiques ultra-haut débit à base de phoTONIQue(2013), ANR-11-EQPX-0017,FLUX,Fibres optiques pour les hauts Flux(2011), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Photonique THz - IEMN (PHOTONIQ THz - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), and Université de Rennes (UNIV-RENNES)
- Subjects
Radiation ,Materials science ,business.industry ,Wafer bonding ,Terahertz radiation ,Contact resistance ,unitraveling carrier photodiodes (UTC-PDs) ,02 engineering and technology ,7. Clean energy ,Photodiode ,law.invention ,Photomixing ,[SPI]Engineering Sciences [physics] ,Responsivity ,020210 optoelectronics & photonics ,law ,Broadband ,0202 electrical engineering, electronic engineering, information engineering ,Millimeter-wave/ terahertz (THz) wave generation ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Diode - Abstract
International audience; We present a resonant-cavity-enhanced broadband unitraveling carrier photodiode optimized for terahertz (THz) generation. It uses a novel semitransparent top-contact utilizing subwavelength apertures for enhanced optical transmission. The contact allows front-side illumination of the photodiode using 1.55-mu m-wavelength light, while still retaining a small contact resistance suitable for photomixing at THz frequencies. The responsivity of the device is improved by introducing a metallic mirror below the diode mesa through wafer bonding, producing an optical resonant cavity. A record continuous-wave output power of 750 mu W is measured for a single photodiode at 300 GHz. Record values of efficiency are also demonstrated.
- Published
- 2017
- Full Text
- View/download PDF
20. V-Shaped InAs/Al0.5Ga0.5Sb Vertical Tunnel FET on GaAs (001) Substrate With I $_{\text {ON}}=\text {433}\,\,\mu$ A. $\mu$ m $^{-\text {1}}$ at V $_{\text {DS}}= \text {0.5}$ V
- Author
-
Xavier Wallart, Mohammed Zaknoune, David Troadec, Laurence Morgenroth, Christophe Coinon, V.K. Chinni, and Ludovic Desplanque
- Subjects
Materials science ,III-V semiconductors ,heterojunction ,InAs/AlGaSb ,Nanotechnology ,02 engineering and technology ,Substrate (electronics) ,Epitaxy ,01 natural sciences ,Gallium arsenide ,chemistry.chemical_compound ,tunnel FET ,0103 physical sciences ,Electrical and Electronic Engineering ,Quantum tunnelling ,010302 applied physics ,Condensed matter physics ,Heterojunction ,021001 nanoscience & nanotechnology ,Tunnel field-effect transistor ,Subthreshold slope ,Isotropic etching ,Electronic, Optical and Magnetic Materials ,chemistry ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,0210 nano-technology ,lcsh:TK1-9971 ,Biotechnology - Abstract
We report on the fabrication of a near broken InAs/Al0.5Ga0.5Sb vertical TUNNEL field effect transistor (TFET). The epitaxial structure is grown on a GaAs (001) substrate thanks to large mismatch accommodation at the GaSb/GaAs interface. The fabrication process involves an anisotropic and selective wet chemical etching of the InAs channel to form a V-shaped mesa with lateral side gates. This new architecture provides a large ON-current at room temperature while enabling an efficient pinch-off thanks to a reduced body thickness near the tunneling interface. With low temperature measurements, we identify the different mechanisms limiting the subthreshold slope at room temperature. At 77 K, where the impact of defects is reduced, a minimum subthreshold slope of 71 mV/decade is achieved for $\text{V}_{\mathrm{ DS}}=0.1$ V with an $\text{I}_{\mathrm{ ON}}/\text{I}_{\mathrm{ OFF}}$ current ratio larger than 6 decades demonstrating that a good trade-off between ON current and switching efficiency could be obtained with a near broken gap heterostructure based n-TFET.
- Published
- 2017
21. Novel Quantum Dot Based Memories with Many Days of Storage Time : Last Steps towards the Holy Grail?
- Author
-
Xavier Wallart, Dieter Bimberg, T. Mikolajick, Technische Universität Berlin (TU), NaMLab gGmbH, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Technical University of Berlin / Technische Universität Berlin (TU), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), and Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
Physics ,Quantenpunkte, QD-Flash, Tunneltechnik, NVSRA ,[PHYS]Physics [physics] ,business.industry ,ddc:621.3 ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Holy Grail ,010309 optics ,Quantum dot ,0103 physical sciences ,Optoelectronics ,0210 nano-technology ,business ,quantum dots, QD-flash, tunneling, NVSRA ,Quantum tunnelling ,ComputingMilieux_MISCELLANEOUS - Abstract
The feasibility of the QD-Flash concept, its fast write and erase times, is demonstrated together with storage times of 4 days at room temperature. The storage time of holes in (InGa)Sb QDs embedded in a (AlGa)P matrix can be extended by growth modifications to 10 y. Tunneling structures were recently demonstrated to solve the trade-off conflict between storage time and erase time. A QD-NVSRAM is suggested to become the first commercial application.
- Published
- 2019
- Full Text
- View/download PDF
22. Étude par C-AFM de substrats magnétiques fonctionnalisés par des SAMs photo-commutables
- Author
-
Louis Thomas, David Guerin, Dominique Deresmes, Jean-Louis Codron, Xavier Wallart, Thierry Melin, Dominique Vuillaume, Stephane Lenfant, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Université de Lille, EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Physique - IEMN (PHYSIQUE - IEMN), ANR-17-CE24-0004,SPINFUN,Spintronique à base de molécule fonctionnelles(2017), Physique-IEMN (PHYSIQUE-IEMN), and Nanostructures, nanoComponents & Molecules - IEMN (NCM-IEMN)
- Subjects
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2019
23. Terahertz pulsed-field magneto-spectrometer at room-temperature
- Author
-
Xavier Wallart, Stefano Barbieri, Jean Leotin, Ludovic Desplanque, Antoine Pagies, Jean-Francois Lampin, Jeffrey L. Hesler, O. Drachenko, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Photonique THz - IEMN (PHOTONIQ THz - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Virginia Diodes Inc, Laboratoire National des Champs Magnétiques Pulsés (LNCMP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520 (IEMN), Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centre National de la Recherche Scientifique (CNRS), Photonique THz - IEMN (PHOTONIQUE THz - IEMN), Optoélectronique - IEMN (OPTO - IEMN), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), NONE FOUND, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN], Photonique THz - IEMN [PHOTONIQUE THz - IEMN], and EPItaxie et PHYsique des hétérostructures - IEMN [EPIPHY - IEMN]
- Subjects
Materials science ,Terahertz radiation ,Harmonic mixer ,Quantum cascade lasers ,Magnetic field measurement ,Physics::Optics ,02 engineering and technology ,01 natural sciences ,law.invention ,010309 optics ,Condensed Matter::Materials Science ,[SPI]Engineering Sciences [physics] ,Effective mass (solid-state physics) ,Laser transitions ,law ,0103 physical sciences ,Gas lasers ,Heterodyne detection ,ComputingMilieux_MISCELLANEOUS ,Spectrometer ,business.industry ,Laser excitation ,021001 nanoscience & nanotechnology ,Laser ,Magnetic field ,Pump lasers ,Electromagnetic coil ,Magnetic fields ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; We have developed a compact pulsed-field THz magneto-spectrometer based on a THz molecular laser and heterodyne detection both at room-temperature. The recently developed continuous-wave THz laser uses mid-IR-pumped ammonia as active medium. The receiver is based on a subharmonic mixer pumped by a multiplication chain. A pulsed magnetic field up to 9 T is supplied by discharging a capacitor in a small coil at room-temperature. We demonstrate here the use of this spectrometer by measuring the effective mass of electrons in an InAs/AlGaSb heterostructure at room-temperature.
- Published
- 2019
- Full Text
- View/download PDF
24. fmax=800 GHz with 75 nm gate length and asymmetric gate recess for InGaAs/InAlAs PHEMT
- Author
-
N. Wichmann, Samnouni, Sylvie Lepilliet, Xavier Wallart, Sylvain Bollaert, C. Coinion, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
- Subjects
010302 applied physics ,Materials science ,business.industry ,Oscillation ,Transistor ,02 engineering and technology ,High-electron-mobility transistor ,021001 nanoscience & nanotechnology ,Noise figure ,01 natural sciences ,Noise (electronics) ,Cutoff frequency ,law.invention ,[SPI]Engineering Sciences [physics] ,chemistry.chemical_compound ,chemistry ,law ,Logic gate ,0103 physical sciences ,Indium phosphide ,Optoelectronics ,0210 nano-technology ,business - Abstract
C'est bien Christophe Coinon et non "Coinion"; International audience; In This paper, we present a high maximum frequency of oscillation (fmax) and a current-gain cutoff frequency (fT) of 800 GHz and 260 GHz respectively with pseudomorphic high-electron mobility transistor (PHEMT), using a composite, InGaAs/InAs/InGaAs channel and an asymmetric gate recess. This result was achieved with long gate length LG = 75 nm. The noise performance has been explored until 110 GHz, and gives a minimum noise figure NFmin = 0.8 dB (1.8 dB) with associated gain Gass = 16 dB (11.6 dB) at 40 GHz (94 GHz). Moreover extending the drain recess length to 225 nm and reducing the gate to source distance by 200 nm allows a fmax = 1.2 THz.
- Published
- 2019
- Full Text
- View/download PDF
25. 1.2 THz maximum frequency of oscillation achieved by using 75 nm gate length and asymmetric gate recess for InGaAs/InAlAs PHEMT
- Author
-
Xavier Wallart, Sylvain Bollaert, C. Coinion, M. Samnouni, N. Wichmann, and S. Lepilliet
- Subjects
Materials science ,Terahertz radiation ,Oscillation ,Gate length ,Ingaas inalas ,High-electron-mobility transistor ,Atomic physics ,Cutoff frequency - Abstract
We report a high maximum frequency of oscillation ( $f_{\max}$ ) and a current-gain cutoff frequency $(\boldsymbol{f}_{\mathbf{T}}).\boldsymbol{f}_{\mathbf{\max}}/\boldsymbol{f}_{\mathbf{T}} =1.2\ \mathbf{THz}/220 \mathbf{GHz}$ ; at $\boldsymbol{V}_{\boldsymbol{D}\boldsymbol{S}}=1\mathbf{V}$ with pseudomorphic high-electron mobility transistor (PHEMT), using a composite, InGaAs/InAs channel and an asymmetric gate recess. This result was achieved with long gate length $\boldsymbol{L}_{\boldsymbol{G}}=75\ \mathbf{nm}$ . The gate-source distance was $0.5\ \mathbf{\mu}\mathbf{m}$ , in the recessed region the asymmetric distance L RD was 225 nm.
- Published
- 2019
- Full Text
- View/download PDF
26. InAlAs/InGaAs-MSM photodetectors based on optical cavity using metallic mirrors: THz frequency operation, high quantum efficiency and high saturation current
- Author
-
Xavier Wallart, Vanessa Avramovic, Maximilien Billet, F. Bavedila, Guillaume Ducournau, C. Coinon, Jean-Francois Lampin, Sara Bretin, Emilien Peytavit, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Photonique THz - IEMN (PHOTONIQUE THz - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), This work was supported by the French Defense Agency DGA (Direction Générale de l'Armement), the RENATECH network (French Network of Major Technology Centers), the Lille University, and the Région Hauts-de-France., Renatech Network, Photonique THz - IEMN (PHOTONIQ THz - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520 (IEMN), Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Université de Nantes (UN), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), and Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Photoconductivity ,Optical resonators ,Terahertz radiation ,THz photonics ,optoelectronics ,Electrical properties and parameters ,Photodetector ,02 engineering and technology ,Telecommunications engineering ,7. Clean energy ,01 natural sciences ,Quantum efficiency ,law.invention ,Photomixing ,[SPI]Engineering Sciences [physics] ,Electric currents ,law ,Saturation current ,0103 physical sciences ,MSM ,010302 applied physics ,business.industry ,Photodetectors ,021001 nanoscience & nanotechnology ,Laser ,Semiconductors ,Optical cavity ,Continuous wave ,Optoelectronics ,0210 nano-technology ,business ,ultrafast-photoconductors - Abstract
International audience; We present a metallic mirror-based resonant cavity-enhanced InAlAs/InGaAs metal-semiconductor-metal (InAlAs/InGaAs-MSM) photodetector driven by a 1550 nm wavelength illumination. The device shows a quantum efficiency higher than 30%, a cut-off frequency higher than 100 GHz, and a saturation current density above 40 kA/cm2 . As a proof of concept, we demonstrate the generation of 0.25 mW of continuous wave output power at a frequency of 100 GHz via the photomixing of an optical beatnote. This result underlines the potential of InAlAs/InGaAs-MSM for subterahertz and terahertz optoelectronic applications driven by telecom lasers.
- Published
- 2019
- Full Text
- View/download PDF
27. Triangular nanoperforation and band engineering of InGaAs quantum wells: a lithographic route toward Dirac cones in III–V semiconductors
- Author
-
F. Vaurette, Athmane Tadjine, Tao Xu, L C Post, Xavier Wallart, Y. Lambert, Daniel Vanmaekelbergh, N. A. Franchina Vergel, D Yarekha, Bruno Grandidier, Christophe Delerue, Didier Stiévenard, Ludovic Desplanque, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Physique-IEMN (PHYSIQUE-IEMN), Debye Institute for Nanomaterials Science, Utrecht University [Utrecht], ANR-16-CE24-0007,Dirac-III-V,Super-réseau d'antipoints de Dirac pour les électrons dans les semiconducteurs III-V(2016), ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), Physique - IEMN (PHYSIQUE - IEMN), Key Laboratory of Advanced Display and System applications, Shanghai University, Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), and AcknowledgmentsThis work was financially supported by the NetherlandsOrganisation for Scientific Research (Grant No.BC.000672.1, TOP Punt), the National Natural ScientificFoundation of China (Grant No. 61775130), the French National Research Agency (Dirac III-V project ANR-16-CE24-0007-01), the French state funds managed by the ANRwithin the Investissements d’Avenir programme EQUIPEXExcelsior (ANR-11-EQPX-0015) and the RENATECHnetwork.
- Subjects
Nanostructure ,Materials science ,Bioengineering ,02 engineering and technology ,band structure engineering ,010402 general chemistry ,01 natural sciences ,Condensed Matter::Materials Science ,Lattice constant ,electron beam lithography ,General Materials Science ,lattice disorder ,Electrical and Electronic Engineering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Electronic band structure ,dirac cone ,Quantum well ,InGaAs quantum well ,[PHYS]Physics [physics] ,business.industry ,Mechanical Engineering ,honeycomb semiconductor ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,0104 chemical sciences ,Honeycomb structure ,Semiconductor ,Mechanics of Materials ,Optoelectronics ,Dry etching ,0210 nano-technology ,business ,Electron-beam lithography - Abstract
International audience; The design of two-dimensional periodic structures at the nanoscale has renewed attention for band structure engineering. Here, we investigate the nanoperforation of InGaAs quantum wells epitaxially grown on InP substrates using high-resolution e-beam lithography and highly plasma based dry etching. We report on the fabrication of a honeycomb structure with an effective lattice constant down to 23 nm by realising triangular antidot lattice with an ultimate periodicity of 40 nm in a 10 nm thick InGaAs quantum well on a p-type InP. The quality of the honeycomb structures is discussed in detail, and calculations show the possibility to measure Dirac physics in these type of samples. Based on the statistical analysis of the fluctuations in pore size and periodicity, calculations of the band structure are performed to assess the robustness of the Dirac cones with respect to distortions of the honeycomb lattice.
- Published
- 2019
- Full Text
- View/download PDF
28. Selective area molecular beam epitaxy of InSb nanostructures on mismatched substrates
- Author
-
Ludovic Desplanque, A. Bucamp, Xavier Wallart, Gilles Patriarche, David Troadec, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), and Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN)
- Subjects
010302 applied physics ,Materials science ,Nanostructure ,business.industry ,Nanowire ,Gate length ,02 engineering and technology ,Substrate (electronics) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Inorganic Chemistry ,0103 physical sciences ,MOSFET ,Materials Chemistry ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,business ,Nanoscopic scale ,ComputingMilieux_MISCELLANEOUS ,Molecular beam epitaxy - Abstract
The selective molecular beam epitaxy of InSb inside nanoscale apertures realized in a SiO2 mask deposited on a highly mismatched substrate is studied. The substrate of interest is GaAs on which a 6.1 A material (InAs or AlGaSb) has been grown accommodating part of the mismatch with InSb. For sub-100 nm wide aperture, several micron long in-plane InSb nanowires can be obtained. Different ways for measuring the electrical properties of these in-plane nanostructures are proposed. A 1 µm long gate length MOSFET is fabricated on a semi-insulating AlGaSb pseudo-substrate without any transfer on a host substrate.
- Published
- 2019
- Full Text
- View/download PDF
29. Trap-free heterostructure of PbS nanoplatelets on InP(001) by chemical epitaxy
- Author
-
Xiaodong Pi, Christophe Delerue, Louis Biadala, Manfred Bayer, Bruno Grandidier, Y. Lambert, Anthony Houppe, Dominique Deresmes, Tao Xu, Jimmy Xu, Gilles Patriarche, David Troadec, Jin Ho Kim, Wenbing Peng, Damien Canneson, Xavier Wallart, Maxime Berthe, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Physique-IEMN (PHYSIQUE-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Pennsylvania State University (Penn State), Penn State System, Groupe d'Etude de la Matière Condensée (GEMAC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), State Key Laboratory of Silicon Materials, Zhejiang University, Experimentelle Physik 2, Technische Universität Dortmund [Dortmund] (TU), ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), ANR-10-EQPX-0050,TEMPOS,Microscopie electronique en transmission sur le plateau Palaiseau Orsay Saclay(2010), Physique - IEMN (PHYSIQUE - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), School of Engineering, Brown University, Providence, RI, United States, ACKNOWLEDGMENTSThis study was financially supported by the EuropeanCommunity’s H2020 Program (grant no. PITN-GA-2016-722176, 'Indeed' Project), the EQUIPEX programs Excelsior(grant no. ANR-11-EQPX-0015) and Tempos (grant no.ANR-10-EQPX-0050)), the RENATECH network, and theNational Key Research and Development Program of China(grant no. 2017YFA0205700). T.X. acknowledges the financialsupport of the National Natural Science Foundation of China(grant no. 61775130), and J.X. thanks the University of Lilleand ARO for partial financial support. D.C. and M.B.acknowledge support of the Deutsche Forschungsgemeinschaftin the frame of ICRC TRR 160., and RENATECH network
- Subjects
Materials science ,Passivation ,chemical epitaxy ,Band gap ,Scanning tunneling spectroscopy ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,Epitaxy ,01 natural sciences ,nanocrystals ,General Materials Science ,PbS/InP heterostructures ,interfacial traps ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[PHYS]Physics [physics] ,business.industry ,General Engineering ,Heterojunction ,021001 nanoscience & nanotechnology ,Nanocrystalline material ,0104 chemical sciences ,Semiconductor ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,scanning tunneling spectroscopy ,0210 nano-technology ,business ,Molecular beam - Abstract
International audience; Semiconductor nanocrystalline heterostructures can be produced by the immersion of semiconductor substrates into an aqueous precursor solution, but this approach usually leads to a high density of interfacial traps. In this work, we study the effect of a chemical passivation of the substrate prior to the nanocrystalline growth. PbS nanoplatelets grown on sulfur-treated InP (001) surfaces at temperatures as low as 95 °C exhibit abrupt crystalline interfaces that allow a direct and reproducible electron transfer to the InP substrate through the nanometer-thick nanoplatelets with scanning tunnelling spectroscopy. It is in sharp contrast with the less defined interface and the hysteresis of the current–voltage characteristics found without the passivation step. Based on a tunnelling effect occurring at energies below the bandgap of PbS, we show the formation of a type II, trap-free, epitaxial heterointerface, with a quality comparable to that grown on a nonreactive InP (110) substrate by molecular beam epitaxy. Our scheme offers an attractive alternative to the fabrication of semiconductor heterostructures in the gas phase.
- Published
- 2019
- Full Text
- View/download PDF
30. Bottom-up fabrication of InAs-on-nothing MOSFET using selective area molecular beam epitaxy
- Author
-
T.A. Karatsori, David Troadec, M Fahed, N. Wichmann, Xavier Wallart, Alexandre Bucamp, Gerard Ghibaudo, A. Olivier, Sylvain Bollaert, Ludovic Desplanque, Ahmed Addad, M. Pastorek, Y. Lechaux, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Laboratoire de structures et propriétés de l'état solide - UMR 8008 (LSPES), Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), ANR-13-NANO-0001,MOSINAS,MOSFET à hétérostructure et film ultra mince d'InAs sur substrat silicium(2013), and Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN)
- Subjects
Materials science ,Fabrication ,MBE ,Bioengineering ,Drain-induced barrier lowering ,02 engineering and technology ,010402 general chemistry ,Epitaxy ,01 natural sciences ,law.invention ,MOSFET ,law ,InAs ,Lattice (order) ,General Materials Science ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Drain current ,III-V ,business.industry ,Mechanical Engineering ,Transistor ,epitaxy ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Mechanics of Materials ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy - Abstract
International audience; In this paper we report on the fabrication and electrical characterization of InAs-on-nothing metal-oxide-semiconductor field-effect transistor composed of a suspended InAs channel and raised InAs n+ contacts. This architecture is obtained using 3D selective and localized molecular beam epitaxy on a lattice mismatched InP substrate. The suspended InAs channel and InAs n+ contacts feature a reproducible and uniform shape with well-defined 3D sidewalls. Devices with 1 μm gate length present a saturation drain current (I Dsat) of 300 mA mm−1 at V DS = 0.8 V and a trans-conductance (GM ) of 120 mS mm−1 at V DS = 0.5 V. In terms of electrostatic control, the devices display a minimal subthreshold swing of 110 mV dec−1 at V DS = 0.5 V and a small drain induced barrier lowering of 50 mV V−1.
- Published
- 2019
- Full Text
- View/download PDF
31. Synthesis of T-Nb2O5 thin-films deposited by atomic layer deposition for miniaturized electrochemical energy storage devices
- Author
-
Saliha Ouendi, Christophe Lethien, Pierre-Louis Taberna, Jean-Louis Codron, Florent Blanchard, Patrice Simon, Laurent Clavier, Xavier Wallart, Cassandra Arico, Pascal Roussel, Réseau sur le stockage électrochimique de l'énergie (RS2E), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Aix Marseille Université (AMU)-Université de Pau et des Pays de l'Adour (UPPA)-Université de Nantes (UN)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Université de Lille, Circuits Systèmes Applications des Micro-ondes - IEMN (CSAM - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Institut TELECOM/TELECOM Lille1, Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), This research is financially supported by the ANR (Agence Nationale pour la Recherche) within the MINOTORES (MIcro-supercoNdensateur à porOsité contrôlée pour des applicaTions à fORte densité d’énErgie sur Substrat rigide et flexible) project (ANR-16-CE24-0012-01). The authors also want to thank the French network on electrochemical energy storage (RS2E, ANR Labex STORE_EX) for the financial support. The French RENATECH network is greatly acknowledged for the use of microfabrication facilities. Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur et de la Recherche, Région Hauts de France and FEDER are acknowledged for supporting and funding XRD facilities., Renatech Network, RS2E, ANR-16-CE24-0012,MINOTORES,MIcro-supercoNdensateur à porOsité contrôlée pour des applicaTions à fORte densité d'énErgie sur Substrat rigide et flexible(2016), ANR-10-LABX-0076,STORE-EX,Laboratory of excellency for electrochemical energy storage(2010), Université de Nantes (UN)-Aix Marseille Université (AMU)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Centre for Digital Systems (CERI SN - IMT Nord Europe), Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Réseau de stockage électrochimique de l’énergie - Energie RS2E (FRANCE), Université de Lille (FRANCE), Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France), and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Fabrication ,Materials science ,Annealing (metallurgy) ,Matériaux ,Energy Engineering and Power Technology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Atomic layer deposition ,[SPI]Engineering Sciences [physics] ,General Materials Science ,Wafer ,Thin film ,Nb2O5 ,Renewable Energy, Sustainability and the Environment ,business.industry ,Micro-devices ,Surface capacity ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Amorphous solid ,Atomic Layer Deposition ,Electrode ,Optoelectronics ,0210 nano-technology ,business ,Capacity loss - Abstract
International audience; Atomic Layer Deposition has been used to grow 30 to 90 nm-thick amorphous Nb2O5 films onto Pt current collectors deposited on Si wafer. While T-Nb2O5 polymorph is obtained by further annealing at 750 °C, the film thickness and the resulting electrode areal capacity are successfully controlled by tuning the number of ALD cycles. The electrochemical analysis reveals a lithium ion intercalation redox mechanism in the T-Nb2O5 electrode. An electrode areal capacity of 8 µAh.cm-2 could be achieved at 1 C, with only 40% capacity loss at 30 C (2 minutes discharging time). This paper aims at demonstrating the use of Atomic Layer Deposition method in the fabrication of Nb205-based on-chip micro-devices for Internet of Things (IoT) applications.
- Published
- 2019
- Full Text
- View/download PDF
32. Hole localization energy of 1.18 eV in GaSb quantum dots embedded in GaP
- Author
-
Xavier Wallart, Christophe Coinon, Pierre Ruterana, Yi Wang, Leo Bonato, Ludovic Desplanque, Dieter Bimberg, and Ismail Firat Arikan
- Subjects
010302 applied physics ,Physics ,Condensed matter physics ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Orders of magnitude (time) ,Transmission electron microscopy ,Quantum dot ,Atomic resolution ,0103 physical sciences ,0210 nano-technology ,Ground state ,Energy (signal processing) ,Wetting layer ,Molecular beam epitaxy - Abstract
Self-organized GaSb quantum dots are embedded in GaP by molecular beam epitaxy and n+p-diodes are fabricated. The structure of the sample is investigated using transmission electron microscopy with atomic resolution. The presence of quantum dots on top of a wetting layer and interdiffusion processes between Sb and P are observed. The localization energy, capture cross-section, and storage time of holes in the ground state of the quantum dots are determined via deep-level transient spectroscopy. Their localization energy of 1.18(±0.01)eV is found to agree with the theoretical prediction of 1.4 eV once the observed interdiffusion is taken into account. A storage time of holes of 3.9(±0.3) days at room temperature is calculated, marking an improvement of 3 orders of magnitude from previous record figures. GaSb/GaP quantum dots are, thus, promising candidates for future non-volatile DRAMs or fast Flash. Schematic representation of the quantum dots (left) and of the valence band in their vicinity (right). The localization energy is marked on the scheme. The localization of the quantum dots prevents thermal emission of holes, generating a storage time at room temperature of 3.9 days.
- Published
- 2016
- Full Text
- View/download PDF
33. On the origins of transport inefficiencies in mesoscopic networks
- Author
-
Serge Huant, Marco G. Pala, Frederico Rodrigues Martins, Hermann Sellier, Benoît Hackens, Sébastien Toussaint, Vincent Bayot, Ludovic Desplanque, Sébastien Faniel, Xavier Wallart, Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Nano-Electronique Quantique et Spectroscopie (QuNES), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Nano-Optique et Forces (NOF ), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Nano-Electronique Quantique et Spectroscopie (NEEL - QuNES), Nano-Optique et Forces (NEEL - NOF), and This work was funded by the Fonds de la Recherche Scientifique FRS-FNRS (Grants No. J.0067.13, T.0172.13, U.N025.14, J.0009.16, and 2450312F) and by the Communauté Française de Belgique (ARC Grant No. 11/16-037, Stresstronics Project and ARC Grant No. 16/21-077, NATURIST Project). S.T. is funded by a Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture FRIA fellowship. B.H. is FRS-FNRS research associate. S.T. acknowledges all co-authors for their fruitful comments on the present work.
- Subjects
Electron density ,Perturbation (astronomy) ,lcsh:Medicine ,Scanning gate microscopy ,02 engineering and technology ,Two-dimensional materials ,01 natural sciences ,Article ,[SPI]Engineering Sciences [physics] ,Electrical resistance and conductance ,0103 physical sciences ,Electronic devices ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,Physics ,[PHYS]Physics [physics] ,Mesoscopic physics ,Multidisciplinary ,Condensed matter physics ,lcsh:R ,Coulomb blockade ,Conductance ,021001 nanoscience & nanotechnology ,Magnetic field ,lcsh:Q ,0210 nano-technology - Abstract
A counter-intuitive behavior analogous to the Braess paradox is encountered in a two-terminal mesoscopic network patterned in a two-dimensional electron system (2DES). Decreasing locally the electron density of one channel of the network paradoxically leads to an increased network electrical conductance. Our low temperature scanning gate microscopy experiments reveal different occurrences of such puzzling conductance variations, thanks to tip-induced localized modifications of electron flow throughout the network’s channels in the ballistic and coherent regime of transport. The robustness of the puzzling behavior is inspected by varying the global 2DES density, magnetic field and the tip-surface distance. Depending on the overall 2DES density, we show that either Coulomb Blockade resonances due to disorder-induced localized states or Fabry-Perot interferences tuned by the tip-induced electrostatic perturbation are at the origin of transport inefficiencies in the network, which are lifted when gradually closing one channel of the network with the tip.
- Published
- 2018
- Full Text
- View/download PDF
34. Study of the oxidation at the Al2O3 / GaSb interface after NH4OH and HCl / (NH4)2S passivations and O2 plasma post atomic layer deposition process
- Author
-
N. Wichmann, Xavier Wallart, Y. Lechaux, A. B. Fadjie-Djomkam, M. Pastorek, Sylvain Bollaert, Universidad de Salamanca, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie (IEMN) - UMR 8520 (IEMN), Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Ecole Centrale de Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Laboratoire International associé sur les phénomènes Critiques et Supercritiques en électronique fonctionnelle, acoustique et fluidique (LIA LICS/LEMAC), and Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Ecole Centrale de Lille-Université de Lille-Université Polytechnique Hauts-de-France (UPHF)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
010302 applied physics ,Materials science ,Passivation ,Annealing (metallurgy) ,Oxide ,Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,Plasma ,021001 nanoscience & nanotechnology ,01 natural sciences ,Oxygen ,Dilution ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,chemistry.chemical_compound ,Atomic layer deposition ,chemistry ,X-ray photoelectron spectroscopy ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; In this work, the Al2O3/GaSb interface has been studied by x-ray photoelectron spectroscopy in order to improve interfacial and electrical properties of metal–oxide–semiconductor structures based on GaSb. First, different passivations using NH4OH or (NH4)2S were studied with a dilution of 4% and 5%, respectively, in order to reduce native oxides on the GaSb surface. Then, we considered the oxidation of the Al2O3 and GaSb surface after treatments with an oxygen (O2) plasma post atomic layer deposition (ALD) process and with post deposition annealing at different temperatures. We found that (NH4)2S passivation leads to a lower quantity of native oxides on the GaSb surface and that the O2 plasma post ALD process enables the formation of an oxygen-rich layer within the Al2O3 at the interface reducing the GaSb surface oxidation after post deposition annealing of the oxide.
- Published
- 2018
- Full Text
- View/download PDF
35. Chemical nature of the anion antisite in dilute phosphide GaAs1−xPx alloy grown at low temperature
- Author
-
J. P. Nys, Ph. Ebert, David Troadec, Xavier Wallart, Didier Stiévenard, Marc Veillerot, Bruno Grandidier, J.F. Lampin, Thomas Demonchaux, Gilles Patriarche, I. Lefebvre, K. K. Sossoe, M. M. Dzagli, H. J. von Bardeleben, M. A. Mohou, A. Addad, M. Schnedler, Christophe Coinon, and Maxime Berthe
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Phosphide ,Alloy ,chemistry.chemical_element ,02 engineering and technology ,engineering.material ,021001 nanoscience & nanotechnology ,01 natural sciences ,Crystallographic defect ,Ion ,law.invention ,chemistry.chemical_compound ,chemistry ,law ,Ab initio quantum chemistry methods ,Chemical physics ,0103 physical sciences ,engineering ,General Materials Science ,Scanning tunneling microscope ,010306 general physics ,0210 nano-technology ,Ternary operation ,Arsenic - Abstract
While nonstoichiometric binary III-V compounds are known to contain group-V antisites, the growth of ternary alloys consisting of two group-V elements might give additional degrees of freedom in the chemical nature of these antisites. Using cross-sectional scanning tunneling microscopy (STM), we investigate low-temperature-grown dilute GaAs1−xPx alloys. High concentrations of negatively charged point defects are found. Combined with transmission electron microscopy and pump-probe transient reflectivity, this study shows that the defects have a behavior similar to the group-V antisites. Further analyses with x-ray diffraction point to the preferential incorporation of arsenic antisites, consistent with ab initio calculations, that yield a formation energy 0.83 eV lower than for phosphorus antisites. Although the negative charge carried by the arsenic antisites in the STM images is shown to be induced by the proximity of the STM tip, the arsenic antisites are not randomly distributed in the alloy, providing insight into the evolution of their charge state during the growth.
- Published
- 2018
- Full Text
- View/download PDF
36. Nano-structured top contact with low optical polarization dependence for THz generation using photodiodes
- Author
-
Mohammed Zaknoune, C. Coinon, M. Billet, Emilien Peytavit, Sara Bretin, Xavier Wallart, Malek Zegaoui, J-F. Lampin, Guillaume Ducournau, François Vaurette, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Photonique THz - IEMN (PHOTONIQ THz - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), DGA, Centre National de la Recherche Scientifique & European Commission, RENATECH Network, equipex FLUX project, Nord-Pas de Calais Regional councilRegion Hauts-de-France, FEDER through the CPER Photonics for Society, University of Lille, equipex ExCELSiOR project, Renatech Network, ANR-13-INFR-0011,COM'TONIQ,COMmunications quasi-optiques ultra-haut débit à base de phoTONIQue(2013), ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), Photonique THz - IEMN (PHOTONIQUE THz - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), and EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN)
- Subjects
Optical fiber ,Materials science ,business.industry ,Terahertz radiation ,Optical power ,Optical polarization ,7. Clean energy ,law.invention ,Photodiode ,[SPI]Engineering Sciences [physics] ,law ,Nano ,Optoelectronics ,Radio frequency ,business ,Sensitivity (electronics) - Abstract
International audience; Uni-travelling carrier photodiode (UTC-PD) with different top optical and electrical accesses are proposed towards optical polarization sensitivity reduction. With the optimized structure, only 1 percent dependence in optical polarization is obtained while ensuring good RF access. Measurements up to 110 GHz are presented at -1V bias and 25.3 mW optical power.
- Published
- 2018
- Full Text
- View/download PDF
37. Resonant Cavity Enhanced InAIAs / InGaAs- Msmphotodetectors with 3 dB-cut off Frequency above 100 GHz
- Author
-
Christophe Coinon, Guillaume Ducournau, Emilien Peytavit, Jean-Francois Lampin, Sara Bretin, M. Billet, Yann Desmet, and Xavier Wallart
- Subjects
Wavelength ,Optical fiber ,Materials science ,law ,Terahertz radiation ,business.industry ,Photodetector ,Optoelectronics ,Resonant cavity ,business ,Cutoff frequency ,law.invention - Abstract
We present a resonant cavity enhanced (RCE) InAIAs/lnGaAs metal-semiconductor-metal (InAIAs/lnGaAs MSM) photodetector driven by a 1550 nm wavelength illumination. The device shows a high dc-photoresponse higher than 0.1 A/W and a cut-off frequency higher than 100 GHz which are suitable properties for sub- THz and THz optoelectronics applications.
- Published
- 2018
- Full Text
- View/download PDF
38. Single channel l00 Gbit/s link in the 300 GHz band
- Author
-
Pascal Szriftgiser, Christophe Coinon, Guillaume Ducournau, Xavier Wallart, Klaus M. Engenhardt, Mohammed Zaknoune, J-F. Lampin, P. Latzel, Malek Zegaoui, V.K. Chinni, and Emilien Peytavit
- Subjects
Physics ,Optical fiber ,business.industry ,Terahertz radiation ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,Photodiode ,010309 optics ,Transmission (telecommunications) ,law ,Modulation ,0103 physical sciences ,Bit error rate ,Wireless ,Optoelectronics ,Channel (broadcasting) ,0210 nano-technology ,business - Abstract
We report on the achievement of single channel 100 Gbit/s transmission, using linear resonant cavity enhanced unitravelling carrier photodiodes and QAM-16 modulation format. The indoor wireless link has been validated for up to 100 Gbit/s and 280 GHz carrier frequency.
- Published
- 2018
- Full Text
- View/download PDF
39. Two-dimensional Rutherford-like scattering in ballistic nanodevices
- Author
-
Xavier Wallart, B. Brun, Benoît Hackens, Sébastien Toussaint, Vincent Bayot, Sébastien Faniel, Ludovic Desplanque, Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Dispositifs Intégrés et Circuits Electroniques Machine Learning Group (DICE - MLG), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), and Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
- Subjects
Physics ,[PHYS]Physics [physics] ,Condensed matter physics ,Scattering ,Semiclassical physics ,Conductance ,Fermi energy ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Classical limit ,symbols.namesake ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,symbols ,Rutherford scattering ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology ,Quantum ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Ballistic injection in a nanodevice is a complex process where electrons can be either transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counterintuitively ease ballistic electron injection. In contrast, local charge accumulation can focus the semiclassical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR and simulations of the conductance of the same device are consistent and agree that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation fits the simple Rutherford formalism in two dimensions in the classical limit.
- Published
- 2018
- Full Text
- View/download PDF
40. In-plane InSb nanowires grown by selective area molecular beam epitaxy on semi-insulating substrate
- Author
-
David Troadec, Gilles Patriarche, A. Bucamp, Xavier Wallart, Ludovic Desplanque, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), and Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN)
- Subjects
Nanostructure ,Fabrication ,Materials science ,Nanowire ,Field effect ,Bioengineering ,02 engineering and technology ,Substrate (electronics) ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,General Materials Science ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,Mechanical Engineering ,General Chemistry ,021001 nanoscience & nanotechnology ,Mechanics of Materials ,Transmission electron microscopy ,Optoelectronics ,0210 nano-technology ,business ,Layer (electronics) ,Molecular beam epitaxy - Abstract
In-plane InSb nanostructures are grown on a semi-insulating GaAs substrate using an AlGaSb buffer layer covered with a patterned SiO2 mask and selective area molecular beam epitaxy. The shape of these nanostructures is defined by the aperture in the silicon dioxide layer used as a selective mask thanks to the use of an atomic hydrogen flux during the growth. Transmission electron microscopy reveals that the mismatch accommodation between InSb and GaAs is obtained in two steps via the formation of an array of misfit dislocations both at the AlGaSb buffer layer/GaAs and at the InSb nanostructures/AlGaSb interfaces. Several micron long in-plane nanowires (NWs) can be achieved as well as more complex nanostructures such as branched NWs. The electrical properties of the material are investigated by the characterization of an InSb NW MOSFET down to 77 K. The resulting room temperature field effect mobility values are comparable with those reported on back-gated MOSFETs based on InSb NWs obtained by vapor liquid solid growth or electrodeposition. This growth method paves the way to the fabrication of complex InSb-based nanostructures.
- Published
- 2018
- Full Text
- View/download PDF
41. Nano Perforation of InGaAs Quantum wells: a Lithography Route Towards III-V Semiconductors with Honeycomb Nanogeometry
- Author
-
Xavier Wallart, Christophe Delerue, L. Christiaan Post, François Vaurette, Yannick Lambert, Tao Xu, Daniel Vanmaekelbergh, Nathali Alexandra Franchina Vergel, Bruno Grandidier, and Ludovic Desplanque
- Subjects
Semiconductor ,Materials science ,business.industry ,Perforation (oil well) ,Nano ,Optoelectronics ,Honeycomb (geometry) ,business ,Lithography ,Quantum well - Published
- 2018
- Full Text
- View/download PDF
42. Indoor 100 Gbit/s THz data link in the 300 GHz band using fast photodiodes
- Author
-
Pascal Szriftgiser, Christophe Coinon, Mohammed Zaknoune, Guillaume Ducournau, M. Zezaoui, E. Pevtavit, V.K. Chinni, Xavier Wallart, J.F. Larnpin, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Photonique THz - IEMN (PHOTONIQ THz - IEMN), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), Renatech Network, ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Photonique THz - IEMN (PHOTONIQUE THz - IEMN), and ACKNOWLEDGMENTThis work was supported by Equipex programs ‘FLUX’, ‘EXCELSIOR’, ANR ‘COM’TONIQ’, Era-net ‘TERALINKS’, ANR-DFG ‘TERASONIC’ projects. Part of the work was realized under an academic collaboration with Tektronix. In particular, a 50GS/s arbitrary waveform generator (Tektronix AWG70001A)' and „200GS/s real-time oscilloscope (Tektronix DPO77002SX) were used. We also thank the IEMN, characterization centre, IEMNIRCICA Telecom platform facilities. This work is supported by the CPER ‘Photonics for society’, and contribute the 'digital world' Hub 3 of the I-Site Université de Lille Nord de France.
- Subjects
Optical amplifier ,Physics ,business.industry ,Terahertz radiation ,05 social sciences ,050209 industrial relations ,Communications system ,300 GHz band ,Photodiode ,law.invention ,Data link ,[SPI]Engineering Sciences [physics] ,photodiodes ,Gigabit ,law ,0502 economics and business ,Range (statistics) ,Optoelectronics ,Wireless ,business ,050203 business & management ,THz communications - Abstract
International audience; This paper presents recent achievements towards 100 Gbit/s data links for future 300 GHz communication systems with the new IEEE 802.15.3d standard. Resonant photodiodes structures, and their application for QAM-16 data links in the THz range are shown in indoor scenario.
- Published
- 2018
- Full Text
- View/download PDF
43. Single-channel 100 Gbit/s transmission using III–V UTC-PDs for future IEEE 802.15.3d wireless links in the 300 GHz band
- Author
-
Xavier Wallart, V.K. Chinni, Mohammed Zaknoune, J.-F. Lampin, Klaus M. Engenhardt, Pascal Szriftgiser, C. Coinon, Guillaume Ducournau, Emilien Peytavit, M. Zégaoui, P. Latzel, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Photonique THz - IEMN (PHOTONIQ THz - IEMN), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Photonique THz - IEMN (PHOTONIQUE THz - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), and ANR-17-CE24-0044,TERASONIC,Transmissions TERAhertz combinant électronique état SOlide et photoNIQue(2017)
- Subjects
Computer science ,business.industry ,020208 electrical & electronic engineering ,Electrical engineering ,020206 networking & telecommunications ,02 engineering and technology ,Photodiode ,law.invention ,Transmission (telecommunications) ,Modulation ,law ,Gigabit ,0202 electrical engineering, electronic engineering, information engineering ,Wireless ,Channel (broadcasting) ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business ,Quadrature amplitude modulation ,IEEE 802.15 ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; The achievement of single-channel 100 Gbit/s transmission, using linear unitravelling carrier photodiodes and QAM-16 modulation format is reported. The wireless link has been done in the indoor case, considering the recent frequency standardised 300 GHz bands.
- Published
- 2018
- Full Text
- View/download PDF
44. Optimization and small-signal modeling of zero-bias InAs self-switching diode detectors
- Author
-
Jan Grahn, J. F. Millithaler, Javier Mateos, Xavier Wallart, Christophe Gaquiere, P. Sangare, Per-Åke Nilsson, Guillaume Ducournau, Ignacio Iniguez-de-la-Torre, Tomas Gonzalez, Andreas Westlund, and Ludovic Desplanque
- Subjects
Physics ,business.industry ,Detector ,Monte Carlo method ,Condensed Matter Physics ,Signal ,Electronic, Optical and Magnetic Materials ,Responsivity ,Extremely high frequency ,Materials Chemistry ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Noise-equivalent power ,Diode ,Voltage - Abstract
Design optimization of the InAs self-switching diode (SSD) intended for direct zero-bias THz detection is presented. The SSD, which consists of nanometer-sized channels in parallel, was described using an equivalent small-signal circuit. Expressions for voltage responsivity and noise equivalent power (NEP) were derived in terms of geometrical design parameters of the SSD, i.e. the channel length and the number of channels. Modeled design dependencies were confirmed by RF and DC measurements on InAs SSDs. In terms of NEP, an optimum number of channels were found with the detector driven by a 50 Omega source. With a matched source, the model predicted a responsivity of 1900 V/W and NEP of 7.7 pW/Hz(1/2) for a single-channel InAs SSD with 35 nm channel width. Monte Carlo device simulations supported observed design dependencies. The proposed small-signal model can be used to optimize SSDs of any material system for low-noise and high-frequency operation as zero-bias detectors. In large signal measurements, the responsivity of the InAs SSDs exhibited a 1 dB deviation from linear responsivity at an input power of -3 dBm from a 50 Omega source.
- Published
- 2015
- Full Text
- View/download PDF
45. Ultra-thin InGaAs-MSM photodetectors for THz optoelectronics applications
- Author
-
M. Billet, Emilien Peytavit, G. Ducoumau, J-F. Lampin, Christophe Coinon, Y. Desmet, Xavier Wallart, Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Photonique THz - IEMN (PHOTONIQUE THZ - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), This work is supported by the Direction Générale de l’Armement, the RENATECH Network and Lille University, and Renatech Network
- Subjects
010302 applied physics ,Materials science ,Optical fiber ,Terahertz radiation ,business.industry ,Photodetectors ,Photodetector ,Optical mixing ,02 engineering and technology ,01 natural sciences ,law.invention ,Photomixing ,[SPI]Engineering Sciences [physics] ,020210 optoelectronics & photonics ,Optics ,law ,Radio frequency ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Optoelectronics ,Optical fibers ,Optical variables measurement ,business ,Cavity resonators - Abstract
International audience; We present a new design of InGaAs metal-semiconductor-metal (InGaAs-MSM) photodetectors placed in optical resonant cavities in order to reduce inter-electrode spacing while keeping a high photoresponse. Its static and dynamic photoresponse properties have been measured by means of a photomixing experiment up to 67 GHz, showing the potential of this device for GHz and THz applications.
- Published
- 2017
- Full Text
- View/download PDF
46. High efficiency UTC photodiode for high spectral efficiency THz links
- Author
-
Mohammed Zaknoune, Xavier Wallart, Emilien Peytavit, J-F. Lampin, Christophe Coinon, Guillaume Ducournau, F. Pavanello, M. Billet, Sara Bretin, P. Latzel, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Photonique THz - IEMN (PHOTONIQUE THZ - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), This work is supported by the ANR under COM'TONIQ ANR-13-INFR-0011-01 program, the DGA, RENATECH Network and Lille 1 university. This work was also supported in part by the equipex FLUX and ExCELSiOR projects and the Nord-Pas de Calais Regional council, and the FEDER through the CPER Photonics for Society. Some of the work was also supported by an IEMN-Lille University-Tektronix academic-industrial partnership on THz communications., Renatech Network, ANR-13-INFR-0011,COM'TONIQ,COMmunications quasi-optiques ultra-haut débit à base de phoTONIQue(2013), ANR-11-EQPX-0017,FLUX,Fibres optiques pour les hauts Flux(2011), and ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011)
- Subjects
Physics ,business.industry ,Terahertz radiation ,High spectral efficiency ,Wireless communication ,02 engineering and technology ,Antenna radiation patterns ,Antenna measurements ,Power level ,Photodiode ,law.invention ,[SPI]Engineering Sciences [physics] ,Photonics ,020210 optoelectronics & photonics ,Gigabit ,Modulation ,law ,Optical receivers ,0202 electrical engineering, electronic engineering, information engineering ,Optoelectronics ,Wireless ,business ,Photodiodes - Abstract
International audience; This paper presents high-efficiency Unitravelling carrier photodiodes for THz communications. Using high-level modulation schemes, QAM-16 and 32 Gbit/s data-rate is obtained using these devices, that combine high power level and linear behavior, mandatory for high-spectral efficiency data links in the THz range.
- Published
- 2017
- Full Text
- View/download PDF
47. Ultra thin body InAs MOSFET with raised InAs n+ S/D by selective MBE
- Author
-
Xavier Wallart, N. Wichmann, Ludovic Desplanque, M. Pastorek, Mohamed Ridaoui, Alain Fadjie, A. Olivier, and Sylvain Bollaert
- Subjects
010302 applied physics ,Materials science ,Fabrication ,business.industry ,Nanotechnology ,Context (language use) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,CMOS ,Logic gate ,0103 physical sciences ,MOSFET ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy ,Electronic circuit ,Voltage - Abstract
As we tend towards extremely scaled CMOS circuits, InAs material has potential to replace traditional Si technology[1]. High electron mobility achieved in this material can enable n-type MOSFET operation at lower voltage supply(V dd ). Another key point required for a very low V dd operation is to reduce the MOSFET access resistance(R access ). Many studies have been reported on that topic[2][3]. However, few experimental studies had been reported on S/D regrowth by selective Molecular Beam Epitaxy(MBE)[4]. In this context, we present electrical performance obtained on UTB InAs MOSFET with raised InAs n+ S/D by local selective MBE with a low R access .
- Published
- 2017
- Full Text
- View/download PDF
48. Static and low frequency noise characterization of ultra-thin body InAs MOSFETs
- Author
-
Charalabos A. Dimitriadis, Xavier Wallart, Ludovic Desplanque, M. Pastorek, Gerard Ghibaudo, T.A. Karatsori, A. Fadjie, N. Wichmann, Sylvain Bollaert, Christoforos G. Theodorou, Institut de Microélectronique, Electromagnétisme et Photonique - Laboratoire d'Hyperfréquences et Caractérisation (IMEP-LAHC ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Aristotle University of Thessaloniki, Department of Physics, ANR-13-NANO-0001,MOSINAS,MOSFET à hétérostructure et film ultra mince d'InAs sur substrat silicium(2013), and EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN)
- Subjects
Materials science ,Infrasound ,Oxide ,Random telegraph noise ,Trapping ,02 engineering and technology ,Electrical characterization ,01 natural sciences ,chemistry.chemical_compound ,Coulomb scattering ,Low-frequency noise ,InAs ,0103 physical sciences ,MOSFET ,Materials Chemistry ,Area density ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010302 applied physics ,Ultra thin body ,business.industry ,III-V materials ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Noise characterization ,Electronic, Optical and Magnetic Materials ,Characterization (materials science) ,Semiconductor ,chemistry ,MOSFETs ,Logic gate ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; A complete static and low frequency noise characterization of ultra-thin body InAs MOSFETs is presented. Characterization techniques, such as the well-known Y-function method established for Si MOSFETs, are applied in order to extract the electrical parameters and study the behavior of these research grade devices. Additionally, the Lambert-W function parameter extraction methodology valid from weak to strong inversion is also used in order to verify its applicability in these experimental level devices. Moreover, a low-frequency noise characterization of the UTB InAs MOSFETs is presented, revealing carrier trapping/detrapping in slow oxide traps and remote Coulomb scattering as origin of 1/f noise, which allowed for the extraction of the oxide trap areal density. Finally, Lorentzian-like noise is also observed in the sub-micron area devices and attributed to both Random Telegraph Noise from oxide individual traps and g-r noise from the semiconductor interface.
- Published
- 2017
- Full Text
- View/download PDF
49. High performance heterostructure low barrier diodes for sub-THz detection
- Author
-
Nicolas Vellas, Xavier Wallart, Christophe Coinon, Florent Gamand, Mohammed Zaknoune, Emilien Peytavit, Guillaume Ducournau, Christophe Gaquiere, Nicolas Thouvenin, M. Werquin, S. Nadar, Jean-Francois Lampin, Maxime Thirault, Sylvain Jonniau, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Advanced NanOmeter DEvices - IEMN (ANODE - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), EPItaxie et PHYsique des hétérostructures - IEMN (EPIPHY - IEMN), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), Photonique THz - IEMN (PHOTONIQUE THz - IEMN), Puissance - IEMN (PUISSANCE - IEMN), Agence Nationale de la RechercheFrench National Research Agency (ANR)European Commission [ANR-13-SECU-0004-01], French National Nanofabrication Network RENATECH, Region Hauts-de-FranceRegion Hauts-de-France, Renatech Network, ANR-11-EQPX-0015,Excelsior,Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge.(2011), Centrale de Micro Nano Fabrication - IEMN (CMNF-IEMN), and Photonique THz - IEMN (PHOTONIQ THz - IEMN)
- Subjects
010302 applied physics ,Radiation ,Materials science ,semiconductor diodes ,business.industry ,Dynamic range ,Terahertz radiation ,Bandwidth (signal processing) ,Detector ,Semiconductor detectors ,020206 networking & telecommunications ,Heterojunction ,02 engineering and technology ,01 natural sciences ,Low noise ,Responsivity ,[SPI]Engineering Sciences [physics] ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Optoelectronics ,Electrical and Electronic Engineering ,business ,submillimeter wave integrated circuits ,terahertz (THz) radiation ,Diode - Abstract
International audience; Heterostructure low barrier diodes (HLBD) based on lattice-matched AlGaInAs triangular barrier have been designed, fabricated, and characterized for zero-bias millimeter-wave and submillimeter-wave detection. Detectors with different barrier height and various active areas have been measured in order to determine the best structure for low-level radiometric detection. Unmatched responsivity of 1500-2000 V/W have been measured around 100 GHz with a video resistance of 400 to 800 O. Thanks to these low-impedances high-matched responsivity of 6000 and 5200 V/W have been demonstrated around 90 and 180 GHz, respectively, with a bandwidth of 25 GHz. Avery lownoise equivalent power of about 0.6 and 0.7 pW/root Hz have been deduced at 90 and 180 GHz, respectively. We show also that the dynamic range of these detectors is more than six decades. This performance makes the HLBD an interesting device for low-level sub-THz detection applications.
- Published
- 2017
- Full Text
- View/download PDF
50. Tunnel junctions in a III–V nanowire by surface engineering
- Author
-
Chloé Rolland, Renaud Leturcq, Philippe Caroff, Xavier Wallart, S. Nadar, and Jean-Francois Lampin
- Subjects
Research council ,Political science ,General Materials Science ,Nanotechnology ,Christian ministry ,Electrical and Electronic Engineering ,Condensed Matter Physics ,Humanities ,Atomic and Molecular Physics, and Optics - Abstract
This work was supported by the Agence Nationale de la Recherche (ANR) (No. ANR-11-JS04-002-01), and the Ministry of Higher Education and Research, NordPas de Calais Regional Council and FEDER through the “Contrat de Projets Etat Region (CPER) 2007-2013”. P. C. is the recipient of an Australian Research Council Future Fellowship (No. FT120100498).
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.