Dongqiang Zhu, Hanqin Tian, Robert B. Jackson, Qihui Wang, Eric A. Davidson, Philippe Ciais, Josep G. Canadell, David R. Kanter, Wulahati Adalibieke, Alexander F. Bouwman, Yan Bo, Feng Zhou, Xiaoying Zhan, Francesco N. Tubiello, Xunhua Zheng, Nathaniel D. Mueller, Xiaoyue Niu, Xiaoqing Cui, Xiaotang Ju, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University [Beijing], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), ICOS-ATC (ICOS-ATC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CONV-0003,CLAND,CLAND : Changement climatique et usage des terres(2016)
Mitigating soil nitrous oxide (N2O) emissions is essential for staying below a 2 °C warming threshold. However, accurate assessments of mitigation potential are limited by uncertainty and variability in direct emission factors (EFs). To assess where and why EFs differ, we created high-resolution maps of crop-specific EFs based on 1,507 georeferenced field observations. Here, using a data-driven approach, we show that EFs vary by two orders of magnitude over space. At global and regional scales, such variation is primarily driven by climatic and edaphic factors rather than the well-recognized management practices. Combining spatially explicit EFs with N surplus information, we conclude that global mitigation potential without compromising crop production is 30% (95% confidence interval, 17–53%) of direct soil emissions of N2O, equivalent to the entire direct soil emissions of China and the United States combined. Two-thirds (65%) of the mitigation potential could be achieved on one-fifth of the global harvested area, mainly located in humid subtropical climates and across gleysols and acrisols. These findings highlight the value of a targeted policy approach on global hotspots that could deliver large N2O mitigation as well as environmental and food co-benefits. Estimating the global cropland N2O mitigation potential is limited by the uncertainty and variability of direct emission factors (EFs). Here, using a data-driven approach with 1,507 chamber-based field observations of EFs, the study shows that EF variation is primarily driven by climatic and edaphic factors. Two-thirds of the mitigation potential could be achieved on one-fifth of the global harvested area, mainly located in humid subtropical climates and across gleysols and acrisols.