1. Integrated large-scale metagenome assembly and multi-kingdom network analyses identify sex differences in the human nasal microbiome
- Author
-
Yanmei Ju, Zhe Zhang, Mingliang Liu, Shutian Lin, Qiang Sun, Zewei Song, Weiting Liang, Xin Tong, Zhuye Jie, Haorong Lu, Kaiye Cai, Peishan Chen, Xin Jin, Wenwei Zhang, Xun Xu, Huanming Yang, Jian Wang, Yong Hou, Liang Xiao, Huijue Jia, Tao Zhang, and Ruijin Guo
- Subjects
Nasal microbiome ,Metagenome-assembled genomes ,Sex differences ,Respiratory health ,Network analysis ,Keystone ,Biology (General) ,QH301-705.5 ,Genetics ,QH426-470 - Abstract
Abstract Background Respiratory diseases impose an immense health burden worldwide. Epidemiological studies have revealed extensive disparities in the incidence and severity of respiratory tract infections between men and women. It has been hypothesized that there might also be a nasal microbiome axis contributing to the observed sex disparities. Results Here, we study the nasal microbiome of healthy young adults in the largest cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We compile the most comprehensive reference catalog for the nasal bacterial community containing 4197 metagenome-assembled genomes and integrate the mycobiome, to provide a valuable resource and a more holistic perspective for the understudied human nasal microbiome. We systematically evaluate sex differences and reveal extensive sex-specific features in both taxonomic and functional levels in the nasal microbiome. Through network analyses, we capture markedly higher ecological stability and antagonistic potentials in the female nasal microbiome compared to the male’s. The analysis of the keystone bacteria reveals that the sex-dependent evolutionary characteristics might have contributed to these differences. Conclusions In summary, we construct the most comprehensive catalog of metagenome-assembled-genomes for the nasal bacterial community to provide a valuable resource for the understudied human nasal microbiome. On top of that, comparative analysis in relative abundance and microbial co-occurrence networks identify extensive sex differences in the respiratory tract community, which may help to further our understanding of the observed sex disparities in the respiratory diseases.
- Published
- 2024
- Full Text
- View/download PDF