1. A novel model for prediction of uniaxial compressive strength of rocks
- Author
-
Xue, Xinhua
- Subjects
Regression models ,Gene expression programming ,Uniaxial compressive strength ,Artificial neural network ,Rocks ,Materials of engineering and construction. Mechanics of materials ,TA401-492 - Abstract
This paper presents an empirical model for predicting the uniaxial compressive strength (UCS) of rocks using gene expression programming (GEP). A total of 44 datasets collected from the literature was used to construct the GEP model. The GEP model developed is evaluated using four conventional regression models and an artificial neural network (ANN) model in terms of three statistical indices. The comparison results confirmed that the proposed GEP model has the lowest root mean square error (RMSE) and the highest coefficient of determination ($R^2$) and correlation coefficient ($R$) values compared to the four conventional regression models and the ANN model in the literature. It is concluded that the proposed GEP model can be applied to predict the UCS of rocks.
- Published
- 2022
- Full Text
- View/download PDF