1. Cadmium spurred Microcystis aeruginosa to unleash more toxic metabolites
- Author
-
Yuan Zhou, Jingjing Li, Ying Pei, Runbing Xu, Jinmei Zi, Keira Harshaw, and Xuexiu Chang
- Subjects
Cyanobacterial metabolites ,Heavy metal pollution ,Combined toxic effect ,Metabolome ,Transcriptome ,Ecological risk ,Environmental pollution ,TD172-193.5 ,Environmental sciences ,GE1-350 - Abstract
Cyanobacterial harmful algal blooms (cHABs), normally dominated by Microcystis aeruginosa, pose a threat to aquatic ecosystems due to the release of various harmful metabolites. Cadmium (Cd), a heavy metal commonly found in surface water and sediments, often coincides with cHABs in eutrophic lakes. However, the ecotoxicological effects of Cd on M. aeruginosa and the potential for combined toxicity are not yet fully understood. In this study, we determined the effective concentrations of cadmium from 10 % (EC10) to 50 % (EC50) for M. aeruginosa based on cell density inhibition. We then conducted a combined analysis focusing on the impact of a low dose Cd (EC10, 139 μg/L) on the physiological factors, transcriptome and both intracellular and extracellular metabolites of M. aeruginosa. We found that Cd treatment decreased M. aeruginosa chlorophyll a content by 24.5 %, which coincided with the suppression of genes linked to ribosomal and photosynthesis pathways. However, Cd exposure stimulated the synthesis and extracellular release of cellular compounds by enhancing amino acid and carbohydrate metabolism. This led to elevated extracellular levels of amino acids, organic acids, and secondary metabolites - including peptides, lipids, benzenoids, terpenes, sterols, and glycosides - which could serve as potential toxic metabolites of cyanobacteria. These changes were driven by the activation of osmoregulatory mechanisms, antioxidant-related amino acids, and ATP-binding cassette transport and secretion systems. Our research indicated that low Cd concentrations could stimulate the synthesis and release of toxic metabolites and exacerbate cHAB threats in eutrophic lakes, underscoring the importance of addressing multiple stressors in freshwater environments.
- Published
- 2025
- Full Text
- View/download PDF