1. Production and biological activity of β-1,3-xylo-oligosaccharides using xylanase from Caulerpa lentillifera.
- Author
-
Liu Q, Jin W, Xie Q, Chen W, Fang H, Yang L, Yang Q, Lin X, Hong Z, Zhao Y, Li W, and Zhang Y
- Subjects
- Mice, Animals, RAW 264.7 Cells, Anti-Inflammatory Agents pharmacology, Anti-Inflammatory Agents chemistry, Antioxidants pharmacology, Antioxidants chemistry, Xylosidases metabolism, Xylosidases genetics, Xylosidases chemistry, Edible Seaweeds, Caulerpa, Oligosaccharides pharmacology, Oligosaccharides chemistry
- Abstract
In this study, β-1,3-xylanase (Xyl3088) was designed and prepared by constructing the expression vector plasmid and expressing and purifying the fusion protein. β-1,3-xylo-oligosaccharides were obtained through the specific enzymatic degradation of β-1, 3-xylan from Caulerpa lentillifera. The enzymolysis conditions were established and optimized as follows: Tris-HCl solution 0.05 mol/L, temperature of 37 °C, enzyme amount of 250 μL, and enzymolysis time of 24 h. The oligosaccharides' compositions and structural characterization were identified by thin-layer chromatography (TLC), ion chromatography (IC) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS). The IC
50 values for scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethyl-benzothiazoline-p-sulfonic acid (ABTS+ ), and superoxide anion radical (•O2- ) were 13.108, 1.258, and 65.926 mg/mL for β-1,3-xylo-oligosaccharides, respectively, and 27.588, 373.048, and 269.12 mg/mL for β-1,4-xylo-oligosaccharides, respectively. Compared with β-1,4-xylo-oligosaccharides, β-1,3-xylo-oligosaccharides had substantial antioxidant activity and their antioxidant effects were concentration dependent. β-1,3-xylo-oligosaccharides also possessed a stronger anti-inflammatory effect on RAW 264.7 cells stimulated by lipopolysaccharide (LPS) than β-1,4-xylo-oligosaccharides. At a working concentration of 100 μg/mL, β-1,3-xylo-oligosaccharides inhibited the release of NO and affected the expression of IL-1β, TNF-α, and other proteins secreted by cells, effectively promoting the release of pro-inflammatory mediators by immune cells in response to external stimuli and achieving anti-inflammatory effects. Therefore, β-1,3-xylo-oligosaccharides are valuable products in food and pharmaceutical industries., Competing Interests: Declaration of competing interest The authors declare no conflicts of interest., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF