82 results on '"Y.J. Ma"'
Search Results
2. Integration of thermal insulation and thermoelectric conversion embedded with phase change materials
- Author
-
Z.H. Wang, Y.J. Ma, G.H. Tang, Hu Zhang, F. Ji, and Q. Sheng
- Subjects
General Energy ,Mechanical Engineering ,Building and Construction ,Electrical and Electronic Engineering ,Pollution ,Industrial and Manufacturing Engineering ,Civil and Structural Engineering - Published
- 2023
3. Phase Transformation and Strengthening Effect Induced by Al Doping and Annealing in Nanostructural Medium Entropy Alloy Films
- Author
-
X.T. Han, Y.J. Ma, H. Ma, J.H. chen, Pingyun Li, Z.Y. Zhang, Y.W. Zhang, G.J. Li, J.B. Hu, and Zhenhua Cao
- Published
- 2023
4. Strain Hardening Behavior of Ti-Rich Light-Weight Medium Entropy Alloys with Excellent Strength and Plasticity Synergy
- Author
-
M.J. Kai, Y.J. Ma, X.T. Wang, L. Cheng, J.B. Hu, Y.Y. Hu, T.R. Xu, G.J. Li, X.K. Meng, and Zhenhua Cao
- Published
- 2023
5. Influence of Al doping and annealing on the microstructures and electrical properties of CrSi films prepared by magnetron co-sputtering
- Author
-
H. Ma, Y.J. Ma, X.T. Han, J.H. Chen, Z. Yang, S.W. Ta, Y.W. Zhang, Z.Y. Zhang, and Z.H. Cao
- Subjects
Condensed Matter Physics ,Instrumentation ,Surfaces, Coatings and Films - Published
- 2023
6. Facile Sol-Gel Route for Designing of Co3o4/N-Doped Carbon and Co-Co3o4/N-Doped Carbon Nanomaterials with Unexpected High Catalytic Performances Toward Hydrogenation Reduction of 4-Nitrophenol
- Author
-
Han Wang, Y.J. Ma, Yanchao Shen, Cancan Zhang, Jiazhi Yang, and Pingyun Li
- Subjects
History ,Polymers and Plastics ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2022
7. Simultaneous Strength-Plasticity Enhancement of Dual-Phase Light-Weight Medium Entropy Alloy
- Author
-
M.J. Kai, Y.J. Ma, G.Y. Zhai, H. Ma, G.J. Li, J.B. Hu, Hui Wang, and Zhenhua Cao
- Subjects
History ,Polymers and Plastics ,Mechanics of Materials ,Mechanical Engineering ,Materials Chemistry ,Metals and Alloys ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2022
8. Simultaneous enhancement in hardness and He-irradiation tolerance of TiVCr/W medium entropy nanolaminates
- Author
-
Z.J. Zhang, X.T. Han, Y.J. Ma, H. Ma, J.H. chen, G.J. Li, Zhenhua Cao, and Yucheng Wu
- Subjects
Mechanics of Materials ,Mechanical Engineering ,Materials Chemistry ,Metals and Alloys - Published
- 2023
9. Optimization of In0.6Ga0.4As/InAs electron barrier for In0.74Ga0.26As detectors grown by molecular beam epitaxy
- Author
-
Hongmin Huang, Y.G. Zhang, Yi Gu, Qian Gong, J.Y. Zhang, Y.H. Shi, G. X. He, X.Y. Chen, Na Yang, and Y.J. Ma
- Subjects
010302 applied physics ,Diffraction ,Materials science ,Photoluminescence ,business.industry ,Superlattice ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Inorganic Chemistry ,Reciprocal lattice ,Transmission electron microscopy ,0103 physical sciences ,Materials Chemistry ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy ,Dark current - Abstract
The effects of thickness and period number of In0.6Ga0.4As/InAs superlattice electron barrier on the performances of InP-based metamorphic In0.74Ga0.26As detectors have been investigated. The samples were grown by molecular beam epitaxy and characterized by high resolution X-ray diffraction reciprocal space maps, photoluminescence, atomic force microscope, plan view transmission electron microscopy and the device dark current measurements. Results show that the dark currents are reduced by insertion of an electron barrier with moderate thickness and period number in the absorption layer, but a superlattice electron barrier structure with excessive thickness and period number can lead to the deterioration of the material quality and device performances.
- Published
- 2019
10. Ultrahigh strengthening effect induced by element addition in nanostructural (TiVCr)100−xWx medium entropy alloy
- Author
-
Z.J. Zhang, Y.J. Ma, X.T. Han, J.H. Chen, G.J. Li, H.Q. Shi, L. Wang, Z.H. Cao, and X.K. Meng
- Subjects
Mechanics of Materials ,Mechanical Engineering ,Materials Chemistry ,Metals and Alloys - Published
- 2022
11. Mis-cut direction of substrate effect on the photoresponse characteristic of β-Ga2O3 film
- Author
-
Y.J. Ma, X.D. Zhang, B.Y. Feng, W.B. Tang, T.W. Chen, H. Qian, L. Zhang, X. Zhou, X. Wei, K. Xu, H.Q. Fu, and B.S. Zhang
- Subjects
Condensed Matter Physics ,Instrumentation ,Surfaces, Coatings and Films - Published
- 2022
12. Tuning length scale effect of hardness in Ag/Nb/Cu/Nb multilayers by Nb amorphous interlayer
- Author
-
M.Z. Wei, J.Z. Huo, C.C. Wang, Y.J. Ma, H.Z. Pan, Z.H. Cao, and X.K. Meng
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science ,Condensed Matter Physics - Published
- 2022
13. Growth temperature optimization of GaAs-based In 0.83 Ga 0.17 As on In x Al 1 − x As buffers
- Author
-
X.Y. Chen, Y.J. Ma, Y.H. Shi, J. Y. Zhang, Yufei Zhu, Y Gu, Y.G. Zhang, Ben Du, and W.Y. Ji
- Subjects
010302 applied physics ,Materials science ,Photoluminescence ,Analytical chemistry ,02 engineering and technology ,Substrate (electronics) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Inorganic Chemistry ,Impurity ,Transmission electron microscopy ,0103 physical sciences ,Materials Chemistry ,0210 nano-technology ,Layer (electronics) ,Deposition (law) ,Molecular beam epitaxy ,Dark current - Abstract
Improved quality of gas source molecular beam epitaxy grown In 0.83 Ga 0.17 As layer on GaAs substrate was achieved by adopting a two-step In x Al 1−x As metamorphic buffer at different temperatures. With a high-temperature In 0.83 Al 0.17 As template following a low-temperature composition continuously graded In x Al 1−x As (x = 0.05–0.86) buffer, better structural, optical and electrical properties of succeeding In 0.83 Ga 0.17 As were confirmed by atomic force microscopy, photoluminescence and Hall-effect measurements. Cross-sectional transmission electron microscopy revealed significant effect of the two-step temperature grown InAlAs buffer layers on the inhibition of threading dislocations due to the deposition of high density nuclei on GaAs substrate at the low growth temperature. The limited reduction for the dark current of GaAs-based In 0.83 Ga 0.17 As photodetectors on the two-step temperature grown In x Al 1−x As buffer layers was ascribed to the contribution of impurities caused by the low growth temperature of InAlAs buffers.
- Published
- 2018
14. In0.83Ga0.17As photodetectors with different doping concentrations in the absorption layers
- Author
-
H.Y. Shi, Y.J. Ma, Gu Yongwei, Yi Zhu, Y.G. Zhang, Ben Du, X.Y. Chen, and W.Y. Ji
- Subjects
010302 applied physics ,Materials science ,business.industry ,Doping ,Photodetector ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,0103 physical sciences ,Optoelectronics ,0210 nano-technology ,business ,Absorption (electromagnetic radiation) ,Layer (electronics) ,Quantum tunnelling ,Voltage ,Dark current - Abstract
The performances of wavelength-extended In0.83Ga0.17As PIN photodetectors with 8 × 1015 or 4 × 1016 cm−3 doped absorption layers were investigated and compared at different temperatures and bias voltages. Results displayed that they showed comparable device performance around room temperature and low bias voltages, but relatively large difference at lower temperatures and higher bias voltages. At lower operation temperatures the In0.83Ga0.17As photodetectors with 8 × 1015 cm−3 doped absorption layers showed smaller dark currents and higher resistance area products R0A than those with 4 × 1016 cm−3 doped absorption layers. It was ascribed to the reduced trap-assisted tunneling dark current in the photodetector with the lower doped In0.83Ga0.17As absorber layer.
- Published
- 2018
15. Determination of atomic-scale chemical composition at semiconductor heteroepitaxial interfaces by high-resolution transmission electron microscopy
- Author
-
Y.J. Ma and C. Wen
- Subjects
010302 applied physics ,Materials science ,Microscope ,business.industry ,Scattering ,Resolution (electron density) ,General Physics and Astronomy ,02 engineering and technology ,Cell Biology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic units ,law.invention ,Condensed Matter::Materials Science ,Semiconductor ,Structural Biology ,Transmission electron microscopy ,law ,0103 physical sciences ,Optoelectronics ,General Materials Science ,Dislocation ,0210 nano-technology ,High-resolution transmission electron microscopy ,business - Abstract
The determination of atomic structures and further quantitative information such as chemical compositions at atomic scale for semiconductor defects or heteroepitaxial interfaces can provide direct evidence to understand their formation, modification, and/or effects on the properties of semiconductor films. The commonly used method, high-resolution transmission electron microscopy (HRTEM), suffers from difficulty in acquiring images that correctly show the crystal structure at atomic resolution, because of the limitation in microscope resolution or deviation from the Scherzer-defocus conditions. In this study, an image processing method, image deconvolution, was used to achieve atomic-resolution (∼1.0 A) structure images of small lattice-mismatch (∼1.0%) AlN/6H-SiC (0001) and large lattice-mismatch (∼8.5%) AlSb/GaAs (001) heteroepitaxial interfaces using simulated HRTEM images of a conventional 300-kV field-emission-gun transmission electron microscope under non-Scherzer-defocus conditions. Then, atomic-scale chemical compositions at the interface were determined for the atomic intermixing and Lomer dislocation with an atomic step by analyzing the deconvoluted image contrast. Furthermore, the effect of dynamical scattering on contrast analysis was also evaluated for differently weighted atomic columns in the compositions.
- Published
- 2018
16. Search for a massless particle beyond the Standard Model in the Σ+ → p + invisible decay
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, O. Afedulidis, X.C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H.-R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R.A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, G.R. Che, G. Chelkov, C. Chen, C.H. Chen, Chao Chen, G. Chen, H.S. Chen, H.Y. Chen, M.L. Chen, S.J. Chen, S.L. Chen, S.M. Chen, T. Chen, X.R. Chen, X.T. Chen, Y.B. Chen, Y.Q. Chen, Z.J. Chen, Z.Y. Chen, S.K. Choi, G. Cibinetto, F. Cossio, J.J. Cui, H.L. Dai, J.P. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, C.Q. Deng, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X.X. Ding, Y. Ding, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, M.C. Du, S.X. Du, Z.H. Duan, P. Egorov, Y.H. Fan, J. Fang, S.S. Fang, W.X. Fang, Y. Fang, Y.Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, Y.T. Feng, M. Fritsch, C.D. Fu, J.L. Fu, Y.W. Fu, H. Gao, X.B. Gao, Y.N. Gao, Yang Gao, S. Garbolino, I. Garzia, L. Ge, P.T. Ge, Z.W. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, S. Gramigna, M. Greco, M.H. Gu, Y.T. Gu, C.Y. Guan, Z.L. Guan, A.Q. Guo, L.B. Guo, M.J. Guo, R.P. Guo, Y.P. Guo, A. Guskov, J. Gutierrez, K.L. Han, T.T. Han, X.Q. Hao, F.A. Harris, K.K. He, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, T. Holtmann, P.C. Hong, G.Y. Hou, X.T. Hou, Y.R. Hou, Z.L. Hou, B.Y. Hu, H.M. Hu, J.F. Hu, S.L. Hu, T. Hu, Y. Hu, G.S. Huang, K.X. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, J.H. Jeong, Q. Ji, Q.P. Ji, W. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, X.Q. Jia, Z.K. Jia, D. Jiang, H.B. Jiang, P.C. Jiang, S.S. Jiang, T.J. Jiang, X.S. Jiang, Y. Jiang, J.B. Jiao, J.K. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, X.M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O.B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, J.J. Lane, P. Larin, L. Lavezzi, T.T. Lei, Z.H. Lei, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, H.J. Li, H.N. Li, Hui Li, J.R. Li, J.S. Li, Ke Li, L.J. Li, L.K. Li, Lei Li, M.H. Li, P.R. Li, Q.M. Li, Q.X. Li, R. Li, S.X. Li, T. Li, W.D. Li, W.G. Li, X. Li, X.H. Li, X.L. Li, X.Z. Li, Xiaoyu Li, Y.G. Li, Z.J. Li, Z.X. Li, C. Liang, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, A. Limphirat, C.C. Lin, D.X. Lin, T. Lin, B.J. Liu, B.X. Liu, C. Liu, C.X. Liu, F.H. Liu, Fang Liu, Feng Liu, G.M. Liu, H. Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, L.C. Liu, Lu Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.K. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.D. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, Z.H. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, Y.F. Lyu, F.C. Ma, H. Ma, H.L. Ma, J.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, T. Ma, X.T. Ma, X.Y. Ma, Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Malde, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, H. Miao, T.J. Min, R.E. Mitchell, X.H. Mo, B. Moses, N.Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L.S. Nie, I.B. Nikolaev, Z. Ning, S. Nisar, Q.L. Niu, W.D. Niu, Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, Y.P. Pei, M. Pelizaeus, H.P. Peng, Y.Y. Peng, K. Peters, J.L. Ping, R.G. Ping, S. Plura, V. Prasad, F.Z. Qi, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, C.F. Qiao, X.K. Qiao, J.J. Qin, L.Q. Qin, L.Y. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, Z.H. Qu, C.F. Redmer, K.J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, S.N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K.Y. Shan, W. Shan, X.Y. Shan, Z.J. Shang, J.F. Shangguan, L.G. Shao, M. Shao, C.P. Shen, H.F. Shen, W.H. Shen, X.Y. Shen, B.A. Shi, H. Shi, H.C. Shi, J.L. Shi, J.Y. Shi, Q.Q. Shi, S.Y. Shi, X. Shi, J.J. Song, T.Z. Song, W.M. Song, Y.J. Song, Y.X. Song, S. Sosio, S. Spataro, F. Stieler, Y.J. Su, G.B. Sun, G.X. Sun, H. Sun, H.K. Sun, J.F. Sun, K. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, Y. Sun, Y.J. Sun, Y.Z. Sun, Z.Q. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, J. Tang, M. Tang, Y.A. Tang, L.Y. Tao, Q.T. Tao, M. Tat, J.X. Teng, V. Thoren, W.H. Tian, Y. Tian, Z.F. Tian, I. Uman, Y. Wan, S.J. Wang, B. Wang, B.L. Wang, Bo Wang, D.Y. Wang, F. Wang, H.J. Wang, J.J. Wang, J.P. Wang, K. Wang, L.L. Wang, M. Wang, Meng Wang, N.Y. Wang, S. Wang, T. Wang, T.J. Wang, W. Wang, W.P. Wang, X. Wang, X.F. Wang, X.J. Wang, X.L. Wang, X.N. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.L. Wang, Y.N. Wang, Y.Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z.L. Wang, Z.Y. Wang, Ziyi Wang, D.H. Wei, F. Weidner, S.P. Wen, Y.R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, X.H. Wu, Y. Wu, Y.H. Wu, Y.J. Wu, Z. Wu, L. Xia, X.M. Xian, B.H. Xiang, T. Xiang, D. Xiao, G.Y. Xiao, S.Y. Xiao, Y.L. Xiao, Z.J. Xiao, C. Xie, X.H. Xie, Y. Xie, Y.G. Xie, Y.H. Xie, Z.P. Xie, T.Y. Xing, C.F. Xu, C.J. Xu, G.F. Xu, H.Y. Xu, M. Xu, Q.J. Xu, Q.N. Xu, W. Xu, W.L. Xu, X.P. Xu, Y.C. Xu, Z.P. Xu, Z.S. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, X.Q. Yan, H.J. Yang, H.L. Yang, H.X. Yang, Tao Yang, Y. Yang, Y.F. Yang, Y.X. Yang, Yifan Yang, Z.W. Yang, Z.P. Yao, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, X.D. Yu, Y.C. Yu, C.Z. Yuan, J. Yuan, L. Yuan, S.C. Yuan, Y. Yuan, Y.J. Yuan, Z.Y. Yuan, C.X. Yue, A.A. Zafar, F.R. Zeng, S.H. Zeng, X. Zeng, Y. Zeng, Y.J. Zeng, X.Y. Zhai, Y.C. Zhai, Y.H. Zhan, A.Q. Zhang, B.L. Zhang, B.X. Zhang, D.H. Zhang, G.Y. Zhang, H. Zhang, H.C. Zhang, H.H. Zhang, H.Q. Zhang, H.R. Zhang, H.Y. Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.S. Zhang, J.W. Zhang, J.X. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, L.M. Zhang, Lei Zhang, P. Zhang, Q.Y. Zhang, R.Y. Zhang, Shuihan Zhang, Shulei Zhang, X.D. Zhang, X.M. Zhang, X.Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Y.M. Zhang, Yan Zhang, Yao Zhang, Z.D. Zhang, Z.H. Zhang, Z.L. Zhang, Z.Y. Zhang, Z.Z. Zhang, G. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, N. Zhao, R.P. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, B.M. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, X. Zhong, H. Zhou, J.Y. Zhou, L.P. Zhou, S. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.Z. Zhou, J. Zhu, K. Zhu, K.J. Zhu, K.S. Zhu, L. Zhu, L.X. Zhu, S.H. Zhu, S.Q. Zhu, T.J. Zhu, W.D. Zhu, Y.C. Zhu, Z.A. Zhu, J.H. Zou, and J. Zu
- Subjects
BESIII ,FCNC process ,Hyperon decay ,BSM particle ,Physics ,QC1-999 - Abstract
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s=3.097GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models.
- Published
- 2024
- Full Text
- View/download PDF
17. Analysis of dark currents and deep level traps in InP- and GaAs-based In0.83Ga0.17As photodetectors
- Author
-
Yonggang Zhang, Ben Du, Y.J. Ma, X.L. Ji, S. P. Xi, Y.H. Shi, W.Y. Ji, Gu Yongwei, X.Y. Chen, and Aowen Li
- Subjects
010302 applied physics ,Materials science ,Deep level ,business.industry ,Photodetector ,02 engineering and technology ,Deep-level trap ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Inorganic Chemistry ,0103 physical sciences ,Thermal ,Materials Chemistry ,Optoelectronics ,Tunneling current ,0210 nano-technology ,business ,Transient spectroscopy ,Dark current - Abstract
InP- and GaAs-based metamorphic In 0.83 Ga 0.17 As photodetectors were grown and investigated. Compared to InP-based photodetector, the dark current of GaAs-based photodetector at room temperature increased 2–3 times but still comparable, whereas at 77 K the dark current increased 2–3 orders. The deep-level transient spectroscopy results reveal that a deep level trap state exists in the GaAs-based photodetector structure. The higher dark current in GaAs-based photodetector at low temperature was mainly ascribed to a deep level trap induced tunneling current. The deep trap centers can also induce non-radiative recombination with smaller thermal active energy in the GaAs-based photodetector structure.
- Published
- 2017
18. Metamorphic InAs quantum well lasers on InP substrates with different well shapes and waveguides
- Author
-
Yonggang Zhang, Y.J. Ma, Aowen Li, W.Y. Ji, Yi Gu, Xingyou Chen, S. P. Xi, Ben Du, and Yulei Shi
- Subjects
010302 applied physics ,Diffraction ,Materials science ,Photoluminescence ,business.industry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Laser ,01 natural sciences ,law.invention ,Inorganic Chemistry ,Transmission electron microscopy ,law ,Quantum dot laser ,0103 physical sciences ,Materials Chemistry ,Optoelectronics ,0210 nano-technology ,business ,Ternary operation ,Waveguide ,Quantum well - Abstract
The effects of well shapes and waveguide materials on InP-based InAs quantum well lasers have been investigated. The laser structures were grown on metamorphic In 0.65 Al 0.35 As buffers. A novel trapezoidal quantum well composed of In y Ga 1−y As grading and InAs layer was used to improve the quality of quantum well. Quaternary In 0.65 Al 0.2 Ga 0.15 As waveguide was applied instead of ternary In 0.65 Ga 0.35 As to enhance the carrier injection. The material qualities have been characterized by X-ray diffraction, transmission electron microscopy and photoluminescence measurements, while the device properties of the lasers with various structures were investigated at different temperatures. Results show that the laser performances have been improved by the use of trapezoidal quantum wells and InAlGaAs waveguides.
- Published
- 2017
19. Influence of erbium substitution on structural, electrical, and up-conversion photoluminescence properties of unfilled tungsten bronze oxides Ba3.75La0.833-xErxNb10O30
- Author
-
Y.J. Ma, Tong Wei, Dongmin An, Y.Y. Guo, Fengming Yang, Z. Dong, T.B. Zhang, and Xiaoxue Lian
- Subjects
010302 applied physics ,Phase transition ,Photoluminescence ,Materials science ,Mechanical Engineering ,Metals and Alloys ,Analytical chemistry ,Mineralogy ,chemistry.chemical_element ,02 engineering and technology ,Dielectric ,Atmospheric temperature range ,Tungsten ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,Tetragonal crystal system ,chemistry ,Mechanics of Materials ,Phase (matter) ,0103 physical sciences ,Materials Chemistry ,0210 nano-technology - Abstract
Tetragonal tungsten bronze (TTB) oxides represent a huge family of materials which exhibit rich electric and magnetic functionalities. Recently, multifunctional materials based on some members of this family have attracted considerable attention. In this work, new plumbum-free multifunctional oxides of Ba3.75La0.833-xErxNb10O30 (BLN-x) were prepared. Their crystal structure, dielectric behavior, ferroelectricity, up-conversion (UC) photoluminescence, temperature sensing behavior, and water-resistance properties were discussed in detail. Based on Rietveld structural refinement, the crystal structure is determined as single phase unfilled TTB structure which can be refined in P4bm space group. Dielectric and ferroelectric results indicates that phase transition and ferroelectric state are sensitive to x. The phase transition temperature, Tm, increases with the increasing of size difference between A1-and A2-site cations. Meanwhile, tight correlation between Tm and tetragonality is also revealed. Moreover, A1 tolerance factor ( t A 1 ) plays an important role to determine the polarization state and phase transition behavior of BLN-x. Normal ferroelectric phase in BLN-x (x = 0.7 and 0.8) is driven by the low t A 1 (0.9025 and 0.89476) value. However, the competition interaction between average A-site size ((A1 + A2)/2) and t A 1 results in the onset of relaxor ferroelectric state for BLN-x (0.2 ≤ x ≤ 0.6). Furthermore, under 980 nm excitation, bright UC green and weak red emissions are observed which correspond to the transitions from 2H11/2/4S3/2 and 4F9/2 to 4I15/2 level, respectively. Color-tunable behavior is achieved with x increase, which can be illustrated by the cross relaxation (CR) processes. The dependence of UC emission intensity on pumping power shows that two photon absorption process is involved in the UC green and red emissions. Temperature sensing properties are investigated according to the fluorescence intensity ratio of UC green emissions in the temperature range of 160–480 K. The maximum sensing sensitivity is found to be 0.0025 K−1. In addition, superior water-resistance feature of UC photoluminescence is also obtained for BLN-x. These results revealed that BLN-x oxides may have promising applications in future multifunctional devices designing.
- Published
- 2016
20. Optical study of semi-metallic LaBaCo2O5+δ epitaxial films on MgO deposited by magnetron sputtering
- Author
-
Qingyu Zhang, Xiaobin Jiang, J. Shaibo, Y.J. Ma, C.Y. Ma, and J.Y. Xiao
- Subjects
Materials science ,Spintronics ,business.industry ,Metals and Alloys ,Oxide ,Giant magnetoresistance ,02 engineering and technology ,Surfaces and Interfaces ,Substrate (electronics) ,Sputter deposition ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,Optical conductivity ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Semiconductor ,chemistry ,Materials Chemistry ,Optoelectronics ,0210 nano-technology ,business - Abstract
LaBaCo 2 O 5 + δ (LBCO) materials are considered promising for a number of important technologies such as solid oxide fuel cells, batteries, chemical sensors, and thin-film functional devices related to giant magnetoresistance and spintronics. In this work, we report the optical properties of LBCO films, which were deposited on MgO (001) substrate by exploring the optimized growth using a radio-frequency magnetron sputtering method. The LBCO film was found having an optical response different from a typical metal or a semiconductor. The LBCO film has rather large optical absorption, which almost linearly decreases from 3.7 × 10 5 to 6.7 × 10 3 cm − 1 in the spectral range from 4.5 to 0.1 eV. The optical conductivity suggests that the LBCO films have potential for applications of optoelectronic devices, such as photodetectors and solar cells.
- Published
- 2016
21. InGaAsP/InP photodetectors targeting on 1.06 μm wavelength detection
- Author
-
Ben Du, Yonggang Zhang, Xingyou Chen, Jiaxiong Fang, Xiumei Shao, Luchun Zhou, Y.J. Ma, Yi Gu, and S. P. Xi
- Subjects
010302 applied physics ,Materials science ,business.industry ,Detector ,Photodetector ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Responsivity ,Wavelength ,Optics ,Reverse bias ,0103 physical sciences ,Optoelectronics ,0210 nano-technology ,business ,Molecular beam epitaxy ,Dark current - Abstract
InP-based InGaAsP photodetectors targeting on 1.06 μm wavelength detection have been grown by gas source molecular beam epitaxy and demonstrated. For the detector with 200 μm mesa diameter, the dark current at 10 mV reverse bias and R 0 A are 8.89 pA (2.2 × 10 −8 A/cm 2 ) and 3.9 × 10 5 Ω cm 2 at room temperature. The responsivity and detectivity of the InGaAsP detector are 0.30 A/W and 1.45 × 10 12 cm Hz 1/2 W −1 at 1.06 μm wavelength. Comparing to the reference In 0.53 Ga 0.47 As detector, the dark current of this InGaAsP detector is about 570 times lower and the detectivity is more than ten times higher, which agrees well with the theoretical estimation.
- Published
- 2016
22. Up-conversion luminescence and temperature sensing properties in Er-doped ferroelectric Sr2Bi4Ti5O18
- Author
-
Q.J. Zhou, Y.F. Xie, Chuanzhen Zhao, Y.J. Ma, Tong Wei, Z.P. Li, Z. Dong, and T.B. Zhang
- Subjects
Materials science ,Process Chemistry and Technology ,Doping ,Analytical chemistry ,02 engineering and technology ,Atmospheric temperature range ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Ion ,Phase (matter) ,Materials Chemistry ,Ceramics and Composites ,Orthorhombic crystal system ,0210 nano-technology ,Luminescence ,Excitation - Abstract
Er-doped Sr 2 Bi 4 Ti 5 O 18 (SBT- x ) ceramics were synthesized via a solid-state reaction method, and their structure, up-conversion luminescence (UCL), temperature sensing performance and ferroelectric behaviors were investigated. The obtained SBT- x samples crystallize in the polar orthorhombic phase, with space group B2cb. Under 980 nm excitation, bright green and weak red emissions are observed which correspond to the transitions from 2 H 11/2 / 4 S 3/2 and 4 F 9/2 to 4 I 15/2 level, respectively. The optimal doping concentration of Er 3+ in SBT host is determined as 0.08. The critical energy transfer distance ( R c ) is about 20.57 A and the major interaction mechanism among Er 3+ ions is determined as the d–d interaction. A possible UCL mechanism is proposed in light of the dependence of emission intensities on pumping power. Furthermore, optical temperature sensing properties are also investigated according to the fluorescence intensity ratio (FIR) of green emissions at 527 and 550 nm in the temperature range from 303 K to 573 K. The maximum sensing sensitivity is found to be 0.0042 K −1 . Additionally, the response of SBT- x to external electric field stimuli is also confirmed. It is believed that SBT- x has potential application as optical temperature sensing materials.
- Published
- 2016
23. Up-conversion photoluminescence and temperature sensing properties of Er3+-doped Bi4Ti3O12 nanoparticles with good water-resistance performance
- Author
-
Y.F. Xie, C. Z. Zhao, Tong Wei, Y.J. Ma, T.B. Zhang, Y. Zhao, Fengming Yang, and H. Y. Xiao
- Subjects
Photoluminescence ,Materials science ,Coprecipitation ,Scanning electron microscope ,General Chemical Engineering ,Analytical chemistry ,Nanoparticle ,02 engineering and technology ,General Chemistry ,Atmospheric temperature range ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Phase (matter) ,Particle ,0210 nano-technology ,Luminescence - Abstract
Er3+-doped Bi4Ti3O12 (BiT-x) with different particle sizes were successfully synthesized via a low-cost coprecipitation method without any surfactants. The phase and structure were characterized by X-ray diffraction (XRD) and analyzed using Rietveld structural refinements. The morphologies were characterized by scanning electron microscope (SEM). We show that synthesis temperature plays an important role to determine the phase and particle size of BiT-x. As a function of excitation power, it is proved that the obtained BiT-x samples display size-dependent up-conversion (UC) luminescence properties. Meanwhile, with x increase, manipulation of UC emission is observed which can be illustrated by the increased CR process probability. The critical energy transfer distance (Rc) and the major interaction mechanism among Er3+ ions are also determined. Furthermore, the temperature sensing behavior based on fluorescence intensity ratio (FIR) technique from the thermally coupled 2H11/2 and 4S3/2 levels are studied in the temperature range from 115 K to 490 K. It is found that the maximum sensing sensitivity is 0.0043 K−1. Meanwhile, BiT-0.05 nanoparticles also display good water-resistance feature. These results reveal that BiT-x oxides may have promising applications in future optical temperature sensors.
- Published
- 2016
24. Chemical vapor deposition of individual single-walled carbon nanotubes using nickel sulfate as catalyst precursor
- Author
-
L.W. Liu, J.H. Fang, L. Lu, Y.J. Ma, Z. Zhang, A.Z. Jin, H.F. Yang, and C.Z. Gu
- Subjects
Methane -- Chemical properties ,Carbon compounds -- Chemical properties ,Chemicals, plastics and rubber industries - Abstract
Individual single-walled carbon nanotubes (SWNTs) were synthesized directly on a Si/SiO2 substrate by chemical vapor deposition using methane as the feedstock and nickel sulfate as the catalyst precursor. This new surface growth approach yields SWNTs of diameter 0.7-3 nm and lengths of up to tens of micrometers.
- Published
- 2004
25. Enhanced up-conversion photoluminescence and dielectric properties of Er- and Zr-codoped strontium bismuth niobate ceramics
- Author
-
Y.J. Ma, Xuan Wang, Chuanzhen Zhao, T.B. Zhang, Tong Wei, Weibo Wang, and Fengming Yang
- Subjects
Photoluminescence ,Materials science ,Ionic radius ,Process Chemistry and Technology ,Doping ,Analytical chemistry ,chemistry.chemical_element ,Mineralogy ,Dielectric ,Ferroelectricity ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Bismuth ,chemistry ,Materials Chemistry ,Ceramics and Composites ,Crystallite ,Luminescence - Abstract
Er- and Zr-codoped strontium bismuth niobate ceramics, Sr 0.97 Er 0.03 Bi 2 Nb 2− x Zr x O 9 (SBN x ) with different x (0≤ x ≤0.1), were synthesized by the solid state reaction method. Their structural, up-conversion (UC) photoluminescence, and dielectric properties were investigated. By Rietveld structural refinement, all SBN x samples exhibited a polycrystalline bismuth-layered perovskite structure with space group A2 1 am. With deliberate introduction of Zr 4+ ions in the bismuth-layered perovskite structure, SBN x samples presented simultaneously enhanced UC photoluminescence and dielectric properties. The UC photoluminescence was investigated as a function of Zr 4+ concentration and incident pump power. Under the 980 nm near infrared (NIR) excitation, bright UC green and weak red emissions were observed which corresponded to the transitions from 2 H 11/2 / 4 S 3/2 and 4 F 9/2 to 4 I 15/2 level, respectively. With x increase, the UC luminescence improvement of SBN x can be attributed to the local distortion of crystal field surrounding the Er 3+ activator which induced by different ionic radii of Zr 4+ and Nb 5+ ions. The dependence of UC emission intensity on pumping power showed that two photon energy transfer process was involved in the UC green and red emissions. Furthermore, electrical measurements indicated that the introduction of Zr 4+ distinctly increased the ferroelectric to paraelectric phase transition temperature ( T C ) of SBN x ceramics from 724 K to 762 K as x ranging from 0.0 to 0.1. It is believed that B site doping in SBN x by large Zr 4+ ion is an effective method to improve UC luminescence and electrical properties of this potentially multifunctional optical-electro material.
- Published
- 2015
26. Structure and upconversion analyses of Er3+-doped Ba6Ti2Nb8O30–Sr6Ti2Nb8O30 solid solutions
- Author
-
P. Li, Tong Wei, L.J. Liu, C.Z. Zhao, J. Wu, H.Y. Xiao, Y.J. Ma, and Z. Dong
- Subjects
Photoluminescence ,Materials science ,Process Chemistry and Technology ,Doping ,chemistry.chemical_element ,Crystal structure ,Tungsten ,engineering.material ,Spectral line ,Photon upconversion ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Crystallography ,chemistry ,Materials Chemistry ,Ceramics and Composites ,engineering ,Bronze ,Solid solution - Abstract
Er 3+ -doped filled tungsten bronze Ba 6 Ti 2 Nb 8 O 30 –Sr 6 Ti 2 Nb 8 O 30 solid solutions with different Ba 6 Ti 2 Nb 8 O 30 /Sr 6 Ti 2 Nb 8 O 30 ratios (SBTN x ) have been prepared by a high temperature solid-state reaction. The crystal structure has been investigated simultaneously by the Rietveld structural refinement and upconversion photoluminescence (UC-PL) spectra. It is found that the crystal structure of SBTN x changes from TE-FTB symmetry (0≤ x ≤3, space group P4bm) to OR-FTB symmetry (3.5≤ x ≤5.91, space group Pba2) with x increasing. More interestingly, the structure transition of SBTN x system is also revealed by the UC-PL spectra which indicate the intimate correlation between the UC-PL spectra and the structure transition. Furthermore, the underlying origin concerning the variation of UC-PL spectra has been studied from crystal structure aspect which suggests UC-PL spectra can be explored as a structure probe for present filled tungsten bronze solid solutions.
- Published
- 2015
27. Determination of spin and parity of D(s)⁎ mesons
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, R. Aliberti, A. Amoroso, M.R. An, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, T.T. Chang, W.L. Chang, G.R. Che, G. Chelkov, C. Chen, Chao Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, S.M. Chen, T. Chen, X.R. Chen, X.T. Chen, Y.B. Chen, Y.Q. Chen, Z.J. Chen, W.S. Cheng, S.K. Choi, X. Chu, G. Cibinetto, S.C. Coen, F. Cossio, J.J. Cui, H.L. Dai, J.P. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X.X. Ding, Y. Ding, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, Z.H. Duan, P. Egorov, Y.L. Fan, J. Fang, S.S. Fang, W.X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, K Fischer, M. Fritsch, C. Fritzsch, C.D. Fu, Y.W. Fu, H. Gao, Y.N. Gao, Yang Gao, S. Garbolino, I. Garzia, P.T. Ge, Z.W. Ge, C. Geng, E.M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, S. Gramigna, M. Greco, M.H. Gu, Y.T. Gu, C.Y Guan, Z.L. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, X.T. H., W.Y. Han, X.Q. Hao, F.A. Harris, K.K. He, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, T. Holtmann, P.C. Hong, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, K.X. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, T. Hussain, N Hüsken, W. Imoehl, M. Irshad, J. Jackson, S. Jaeger, S. Janchiv, J.H. Jeong, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, Z.K. Jia, P.C. Jiang, S.S. Jiang, T.J. Jiang, X.S. Jiang, Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, X. K., S. Kabana, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, A. Khoukaz, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuessner, A. Kupsc, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, T.T. Lei, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, H.N. Li, Hui Li, J.R. Li, J.S. Li, J.W. Li, Ke Li, L.J Li, L.K. Li, Lei Li, M.H. Li, P.R. Li, S.X. Li, T. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Y.G. Li, Z.J. Li, Z.X. Li, Z.Y. Li, C. Liang, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, A. Limphirat, D.X. Lin, T. Lin, B.J. Liu, B.X. Liu, C. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, G.M. Liu, H. Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, L.C. Liu, Lu Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.K. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, Z.H. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, Y.F. Lyu, F.C. Ma, H.L. Ma, J.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.Y. Ma, Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, H. Miao, T.J. Min, R.E. Mitchell, X.H. Mo, N.Yu. Muchnoi, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y.P. Pei, M. Pelizaeus, H.P. Peng, K. Peters, J.L. Ping, R.G. Ping, S. Plura, S. Pogodin, V. Prasad, F.Z. Qi, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, C.F. Qiao, J.J. Qin, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, C.F. Redmer, K.J. Ren, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, S.N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K.Y. Shan, W. Shan, X.Y. Shan, J.F. Shangguan, L.G. Shao, M. Shao, C.P. Shen, H.F. Shen, W.H. Shen, X.Y. Shen, B.A. Shi, H.C. Shi, J.L. Shi, J.Y. Shi, Q.Q. Shi, R.S. Shi, X. Shi, J.J. Song, T.Z. Song, W.M. Song, Y.J. Song, Y.X. Song, S. Sosio, S. Spataro, F. Stieler, Y.J. Su, G.B. Sun, G.X. Sun, H. Sun, H.K. Sun, J.F. Sun, K. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, Y. Sun, Y.J. Sun, Y.Z. Sun, Z.T. Sun, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, Y.A. Tang, L.Y Tao, Q.T. Tao, M. Tat, J.X. Teng, V. Thoren, W.H. Tian, Y. Tian, Z.F. Tian, I. Uman, B. Wang, B.L. Wang, Bo Wang, C.W. Wang, D.Y. Wang, F. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, Meng Wang, S. Wang, T. Wang, T.J. Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.J. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.H. Wang, Y.N. Wang, Y.Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z.L. Wang, Z.Y. Wang, Ziyi Wang, D. Wei, D.H. Wei, F. Weidner, S.P. Wen, C.W. Wenzel, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, X.H. Wu, Y. Wu, Y.J Wu, Z. Wu, L. Xia, X.M. Xian, T. Xiang, D. Xiao, G.Y. Xiao, H. Xiao, S.Y. Xiao, Y.L. Xiao, Z.J. Xiao, C. Xie, X.H. Xie, Y. Xie, Y.G. Xie, Y.H. Xie, Z.P. Xie, T.Y. Xing, C.F. Xu, C.J. Xu, G.F. Xu, H.Y. Xu, Q.J. Xu, W.L. Xu, X.P. Xu, Y.C. Xu, Z.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, X.Q Yan, H.J. Yang, H.L. Yang, H.X. Yang, Tao Yang, Y. Yang, Y.F. Yang, Y.X. Yang, Yifan Yang, Z.W. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, T. Yu, X.D. Yu, C.Z. Yuan, L. Yuan, S.C. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A.A. Zafar, F.R. Zeng, X. Zeng, Y. Zeng, Y.J. Zeng, X.Y. Zhai, Y.H. Zhan, A.Q. Zhang, B.L. Zhang, B.X. Zhang, D.H. Zhang, G.Y. Zhang, H. Zhang, H.H. Zhang, H.Q. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.X. Zhang, J.Y. Zhang, J.Z. Zhang, Jiawei Zhang, L.M. Zhang, L.Q. Zhang, Lei Zhang, P. Zhang, Q.Y. Zhang, Shuihan Zhang, Shulei Zhang, X.D. Zhang, X.M. Zhang, X.Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Yan Zhang, Yao Zhang, Z.H. Zhang, Z.L. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, X. Zhong, H. Zhou, L.P. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.Z. Zhou, J. Zhu, K. Zhu, K.J. Zhu, L. Zhu, L.X. Zhu, S.H. Zhu, S.Q. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, J.H. Zou, and J. Zu
- Subjects
Charmed meson ,Spin and parity ,BESIII ,Physics ,QC1-999 - Abstract
The spin and parity of the charmed mesons Ds⁎+, D⁎0 and D⁎+ are determined for the first time to be JP=1− with significances greater than 10σ over other hypotheses of 2+ and 3−, using an e+e− collision data sample with an integrated luminosity of 3.19 fb−1 collected by the BESIII detector at a center-of-mass energy of 4.178 GeV. Different spin-parity hypotheses are tested via a helicity amplitude analysis of the processes e+e−→Ds⁎+Ds−, D⁎0D0 and D⁎+D−, with Ds⁎+→Ds+γ, D⁎0→D0π0, and D⁎+→D+π0. The results confirm the quark model predictions.
- Published
- 2023
- Full Text
- View/download PDF
28. InP-based pseudomorphic InAs/InGaAs triangular quantum well lasers with bismuth surfactant
- Author
-
Yonggang Zhang, Yi Gu, Ben Du, Qian Gong, W.Y. Ji, Y.J. Ma, Xingyou Chen, and Y.H. Shi
- Subjects
010302 applied physics ,Materials science ,business.industry ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Laser ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,law.invention ,Semiconductor laser theory ,Bismuth ,Semiconductor ,Pulmonary surfactant ,chemistry ,Quantum dot laser ,law ,0103 physical sciences ,Optoelectronics ,Quantum well laser ,Electrical and Electronic Engineering ,0210 nano-technology ,business ,Engineering (miscellaneous) ,Quantum well - Abstract
An InP-based 2.1 μm InAs/In0.53Ga0.47As triangular quantum well laser grown with Bi surfactant has shown improved performance in comparison to the device with the same structure but grown without Bi surfactant. Under continuous-wave driving operation, the output light power is increased from 32.6 to 37.5 mW at the same injecting current of 850 mA at 200 K. The external differential and internal quantum efficiencies for the laser with Bi surfactant are 18.4% and 41%, respectively, which are correspondingly higher than 13.1% and 31% for the reference device. Furthermore, a decreased internal loss from 20.9 to 17.6 cm−1 for the Bi surfactant laser is also observed. These results suggest that Bi surfactant is promising for further enhancing performances of strained quantum well laser diodes.
- Published
- 2017
29. Enhancement of high-temperature oxidation resistance and mechanical properties of Ni3Al thin films by inserting ultrathin Cr layers
- Author
-
Xianhua Wei, Y.J. Ma, M. Wang, Y.Y. Xing, and Bo Dai
- Subjects
Materials science ,Alloy ,Metallurgy ,Intermetallic ,Substrate (electronics) ,engineering.material ,Sputter deposition ,Nanoindentation ,Condensed Matter Physics ,Surfaces, Coatings and Films ,engineering ,Composite material ,Thin film ,Instrumentation ,Elastic modulus ,Layer (electronics) - Abstract
Ni3Al thin films and Ni3Al/Cr multilayer films with a chemically ordered intermetallic Ni3Al phase were deposited on NO6625 alloy substrates by magnetron sputtering at 400 °C. Compared with the single layers, the multilayer samples show superior high-temperature oxidation resistance and mechanical properties. Both of the samples can prevent the substrate from being drastic oxidized even at 1100 °C. Their oxidation kinetics was found to follow the logarithmic law at 900 °C and be converted to the parabolic law at 1000 °C and 1100 °C. The oxidation rate can be reduced by one order of magnitude after inserting the Cr ultrathin layer. Nanoindentation measurements revealed that the hardness was decreased from 8.4 GPa to 8.0 GPa while the elastic modulus was increased from 191.4 GPa to 219.2 GPa. Furthermore, nano-scratch test indicated that the multilayer exhibited improved scratch toughness than that of the Ni3Al thin film.
- Published
- 2014
30. 3 μm InAs quantum well lasers at room temperature on InP
- Author
-
Weimin Huang, J.Y. Zhang, Y.J. Ma, G. X. He, Hongmin Huang, Y.H. Shi, W.Y. Ji, Y.G. Zhang, Xingyou Chen, Yi Gu, and Qian Gong
- Subjects
010302 applied physics ,Diffraction ,Photoluminescence ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Laser ,Cladding (fiber optics) ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Pulsed mode ,Optoelectronics ,Quantum well laser ,0210 nano-technology ,business ,Lasing threshold ,Quantum well - Abstract
An InP-based metamorphic InAs quantum well laser has been demonstrated on an In0.8Al0.2As template with electrically pumped lasing up to 3 μm at room temperature. The dual-layer upper cladding structure, consisting of In0.8Al0.2As first cladding and Al0.35Ga0.65As second cladding layers, is applied to enhance the electronic and optical confinements. Despite the lattice-mismatched approach, X-ray diffraction and photoluminescence measurements show a moderate material quality of the active region. By using 15-nm-thick type-I quantum wells, the lasing wavelength has been achieved to be 3.06 μm in the pulsed mode at 300 K and 2.93 μm in the continuous-wave mode at 220 K.
- Published
- 2018
31. Search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λc+→pKS0π−e+νe
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, R. Aliberti, A. Amoroso, M.R. An, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, V. Batozskaya, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, T.T. Chang, W.L. Chang, G.R. Che, G. Chelkov, C. Chen, Chao Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, S.M. Chen, T. Chen, X.R. Chen, X.T. Chen, Y.B. Chen, Y.Q. Chen, Z.J. Chen, W.S. Cheng, S.K. Choi, X. Chu, G. Cibinetto, S.C. Coen, F. Cossio, J.J. Cui, H.L. Dai, J.P. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X.X. Ding, Y. Ding, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, Z.H. Duan, P. Egorov, Y.L. Fan, J. Fang, S.S. Fang, W.X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, K. Fischer, M. Fritsch, C. Fritzsch, C.D. Fu, Y.W. Fu, H. Gao, Y.N. Gao, Yang Gao, S. Garbolino, I. Garzia, P.T. Ge, Z.W. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, S. Gramigna, M. Greco, M.H. Gu, Y.T. Gu, C.Y. Guan, Z.L. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, X.T. H, W.Y. Han, X.Q. Hao, F.A. Harris, K.K. He, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, T. Holtmann, P.C. Hong, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, K.X. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, T. Hussain, N. Hüsken, W. Imoehl, M. Irshad, J. Jackson, S. Jaeger, S. Janchiv, J.H. Jeong, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, Z.K. Jia, P.C. Jiang, S.S. Jiang, T.J. Jiang, X.S. Jiang, Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, X. K, S. Kabana, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, A. Khoukaz, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuessner, A. Kupsc, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, T.T. Lei, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, H.N. Li, Hui Li, J.R. Li, J.S. Li, J.W. Li, Ke Li, L.J. Li, L.K. Li, Lei Li, M.H. Li, P.R. Li, S.X. Li, T. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Y.G. Li, Z.J. Li, Z.X. Li, Z.Y. Li, C. Liang, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, A. Limphirat, D.X. Lin, T. Lin, B.J. Liu, B.X. Liu, C. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, G.M. Liu, H. Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, L.C. Liu, Lu Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.K. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, Z.H. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, Y.F. Lyu, F.C. Ma, H.L. Ma, J.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.Y. Ma, Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, H. Miao, T.J. Min, R.E. Mitchell, X.H. Mo, N.Yu. Muchnoi, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y.P. Pei, M. Pelizaeus, H.P. Peng, K. Peters, J.L. Ping, R.G. Ping, S. Plura, S. Pogodin, V. Prasad, F.Z. Qi, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, C.F. Qiao, J.J. Qin, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, C.F. Redmer, K.J. Ren, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, S.N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K.Y. Shan, W. Shan, X.Y. Shan, J.F. Shangguan, L.G. Shao, M. Shao, C.P. Shen, H.F. Shen, W.H. Shen, X.Y. Shen, B.A. Shi, H.C. Shi, J.L. Shi, J.Y. Shi, Q.Q. Shi, R.S. Shi, X. Shi, J.J. Song, T.Z. Song, W.M. Song, Y.J. Song, Y.X. Song, S. Sosio, S. Spataro, F. Stieler, Y.J. Su, G.B. Sun, G.X. Sun, H. Sun, H.K. Sun, J.F. Sun, K. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, Y. Sun, Y.J. Sun, Y.Z. Sun, Z.T. Sun, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, Y.A. Tang, L.Y. Tao, Q.T. Tao, M. Tat, J.X. Teng, V. Thoren, W.H. Tian, Y. Tian, Z.F. Tian, I. Uman, B. Wang, B.L. Wang, Bo Wang, C.W. Wang, D.Y. Wang, F. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, Meng Wang, S. Wang, T. Wang, T.J. Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.J. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.H. Wang, Y.N. Wang, Y.Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z.L. Wang, Z.Y. Wang, Ziyi Wang, D. Wei, D.H. Wei, F. Weidner, S.P. Wen, C.W. Wenzel, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, X.H. Wu, Y. Wu, Y.J. Wu, Z. Wu, L. Xia, X.M. Xian, T. Xiang, D. Xiao, G.Y. Xiao, H. Xiao, S.Y. Xiao, Y.L. Xiao, Z.J. Xiao, C. Xie, X.H. Xie, Y. Xie, Y.G. Xie, Y.H. Xie, Z.P. Xie, T.Y. Xing, C.F. Xu, C.J. Xu, G.F. Xu, H.Y. Xu, Q.J. Xu, W.L. Xu, X.P. Xu, Y.C. Xu, Z.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, X.Q. Yan, H.J. Yang, H.L. Yang, H.X. Yang, Tao Yang, Y. Yang, Y.F. Yang, Y.X. Yang, Yifan Yang, Z.W. Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, T. Yu, X.D. Yu, C.Z. Yuan, L. Yuan, S.C. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A.A. Zafar, F.R. Zeng, X. Zeng, Y. Zeng, Y.J. Zeng, X.Y. Zhai, Y.H. Zhan, A.Q. Zhang, B.L. Zhang, B.X. Zhang, D.H. Zhang, G.Y. Zhang, H. Zhang, H.H. Zhang, H.Q. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.X. Zhang, J.Y. Zhang, J.Z. Zhang, Jiawei Zhang, L.M. Zhang, L.Q. Zhang, Lei Zhang, P. Zhang, Q.Y. Zhang, Shuihan Zhang, Shulei Zhang, X.D. Zhang, X.M. Zhang, X.Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Yan Zhang, Yao Zhang, Z.H. Zhang, Z.L. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, X. Zhong, H. Zhou, L.P. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.Z. Zhou, J. Zhu, K. Zhu, K.J. Zhu, L. Zhu, L.X. Zhu, S.H. Zhu, S.Q. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, J.H. Zou, and J. Zu
- Subjects
BESIII ,Λc+ baryon ,Semi-leptonic decays ,Branching fractions ,Physics ,QC1-999 - Abstract
We search for the semi-leptonic decays Λc+→Λπ+π−e+νe and Λc+→pKS0π−e+νe in a sample of 4.5fb−1 of e+e− annihilation data collected in the center-of-mass energy region between 4.600GeV and 4.699GeV by the BESIII detector at the BEPCII. No significant signals are observed, and the upper limits on the decay branching fractions are set to be B(Λc+→Λπ+π−e+νe)
- Published
- 2023
- Full Text
- View/download PDF
32. Bismuth for tailoring and modification of InP-based detector and laser structures in 2–3 µm band
- Author
-
S. P. Xi, Aowen Li, Gu Yongwei, Yun Zhang, Y.J. Ma, Xingyou Chen, and Ben Du
- Subjects
010302 applied physics ,Photoluminescence ,Materials science ,business.industry ,Detector ,chemistry.chemical_element ,Heterojunction ,02 engineering and technology ,Substrate (electronics) ,021001 nanoscience & nanotechnology ,01 natural sciences ,Bismuth ,chemistry.chemical_compound ,Optics ,chemistry ,0103 physical sciences ,Optoelectronics ,0210 nano-technology ,business ,Quantum well ,Indium gallium arsenide ,Dark current - Abstract
The effects of bismuth on the performances of InP-based detectors and multiple triangular quantum wells in 2–3 µm band have been investigated. The cut-off wavelength of the InGaAsBi detector is tailored to 2.1 µm by the bismuth incorporation in the absorption layer, but the detector still shows an encouraging dark current due to decreased lattice mismatch to InP substrate. The material quality of the InAs/InGaAs triangular quantum wells has been significantly improved by introducing bismuth as a surfactant during growth. The moderate bismuth reduces the surface roughness, improves the heterostructure interfaces and enhances the photoluminescence intensity obviously, whereas deterioration occurs in the case of excessive bismuth flux. Bismuth shows a promising potential to improve InP-based detector and laser structures both by incorporating into the alloys and acting as a surfactant.
- Published
- 2016
33. An overview on smart distribution grid
- Author
-
X.S. Zhou, P.D. Xiang, and Y.J. Ma
- Subjects
Computer science ,Distributed computing ,Distribution grid - Published
- 2016
34. Study of the processes χ cJ → Ξ − Ξ ¯ $$ \overline{\Xi} $$ + and Ξ0 Ξ ¯ $$ \overline{\Xi} $$ 0
- Author
-
The BESIII collaboration, M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, R. Aliberti, A. Amoroso, M.R. An, Q. An, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, Z. J Chen, W.S. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, X.C. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, Y.L. Fan, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, M. Fritsch, C.D. Fu, Y. Gao, Y.G. Gao, I. Garzia, P.T. Ge, C. Geng, E.M. Gersabeck, A Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, C. Y Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, T.T. Han, W.Y. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, Z. Huang, T. Hussain, N Hüsken, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, H.B. Jiang, X.S. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, H.N. Li, J.L. Li, J.Q. Li, J.S. Li, Ke Li, L.K. Li, Lei Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, C.X. Lin, D.X. Lin, T. Lin, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, G.M. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.X. Ma, X.Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, N. Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, S. Pogodin, R. Poling, V. Prasad, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, Z. Qian, C.F. Qiao, J.J. Qin, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, H.S. Sang, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, W. Shan, X.Y. Shan, J.F. Shangguan, M. Shao, C.P. Shen, H.F. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X. D Shi, J.J. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, K.X. Su, P.P. Su, F.F. Sui, G.X. Sun, H.K. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X Sun, Y.J. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, J.X. Teng, V. Thoren, W.H. Tian, Y.T. Tian, I. Uman, B. Wang, C.W. Wang, D.Y. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, S. Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Y.Y. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, D.H. Wei, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, X.H. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, C.J. Xu, G.F. Xu, Q.J. Xu, W. Xu, X.P. Xu, Y.C. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, H.J. Yang, H.X. Yang, L. Yang, S.L. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, L. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A.A. Zafar, X. Zeng, Y. Zeng, A.Q. Zhang, B.X. Zhang, Guangyi Zhang, H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L.M. Zhang, L.Q. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, Shulei Zhang, X.D. Zhang, X.Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Yan Zhang, Yao Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
Branching fraction ,e +-e − Experiments ,QCD ,Quarkonium ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract Using 448.1 × 106 ψ(3686) decays collected with the BESIII detector at the BEPCII e + e − storage rings, the branching fractions and angular distributions of the decays χ cJ → Ξ − Ξ ¯ $$ \overline{\Xi} $$ + and Ξ0 Ξ ¯ $$ \overline{\Xi} $$ 0 (J = 0, 1, 2) are measured based on a partial-reconstruction technique. The decays χ c1 → Ξ0 Ξ ¯ $$ \overline{\Xi} $$ 0 and χ c2 → Ξ0 Ξ ¯ $$ \overline{\Xi} $$ 0 are observed for the first time with statistical significances of 7σ and 15σ, respectively. The results of this analysis are in good agreement with previous measurements and have significantly improved precision.
- Published
- 2022
- Full Text
- View/download PDF
35. Search for invisible decays of a dark photon using e+e− annihilation data at BESIII
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, M. Albrecht, R. Aliberti, A. Amoroso, M.R. An, Q. An, X.H. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, V. Batozskaya, D. Becker, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, C. Chen, Chao Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, S.M. Chen, T. Chen, X.R. Chen, X.T. Chen, Y.B. Chen, Z.J. Chen, W.S. Cheng, S.K. Choi, X. Chu, G. Cibinetto, S.C. Coen, F. Cossio, J.J. Cui, H.L. Dai, J.P. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, P. Egorov, Y.L. Fan, J. Fang, S.S. Fang, W.X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, K. Fischer, M. Fritsch, C. Fritzsch, C.D. Fu, H. Gao, Y.N. Gao, Yang Gao, S. Garbolino, I. Garzia, P.T. Ge, Z.W. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, T.T. Han, W.Y. Han, X.Q. Hao, F.A. Harris, K.K. He, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, M. Himmelreich, T. Holtmann, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, K.X. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, T. Hussain, N. Hüsken, W. Imoehl, M. Irshad, J. Jackson, S. Jaeger, S. Janchiv, E. Jang, J.H. Jeong, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, Z.K. Jia, H.B. Jiang, S.S. Jiang, X.S. Jiang, Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, T.T. Lei, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, H.N. Li, J.Q. Li, J.S. Li, J.W. Li, Ke Li, L.J. Li, L.K. Li, Lei Li, M.H. Li, P.R. Li, S.X. Li, S.Y. Li, T. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Z.X. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, A. Limphirat, D.X. Lin, T. Lin, B.J. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, G.M. Liu, H. Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, Lu Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.K. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, Z.H. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, Y.F. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.Y. Ma, Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, H. Miao, T.J. Min, R.E. Mitchell, X.H. Mo, N.Yu. Muchnoi, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y.P. Pei, M. Pelizaeus, H.P. Peng, K. Peters, J.L. Ping, R.G. Ping, S. Plura, S. Pogodin, V. Prasad, F.Z. Qi, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, Z. Qian, C.F. Qiao, J.J. Qin, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, C.F. Redmer, K.J. Ren, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, S.N. Ruan, A. Sarantsev, Y. Schelhaas, C. Schnier, K. Schoenning, M. Scodeggio, K.Y. Shan, W. Shan, X.Y. Shan, J.F. Shangguan, L.G. Shao, M. Shao, C.P. Shen, H.F. Shen, X.Y. Shen, B.A. Shi, H.C. Shi, J.Y. Shi, Q.Q. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, F. Stieler, K.X. Su, P.P. Su, Y.J. Su, G.X. Sun, H. Sun, H.K. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, X. Sun, Y.J. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, L.Y. Tao, Q.T. Tao, M. Tat, J.X. Teng, V. Thoren, W.H. Tian, Y. Tian, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, F. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, Meng Wang, S. Wang, T. Wang, T.J. Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.H. Wang, Y.Q. Wang, Yaqian Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, D.H. Wei, F. Weidner, S.P. Wen, C.W. Wenzel, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, X.H. Wu, Y. Wu, Y.J. Wu, Z. Wu, L. Xia, T. Xiang, D. Xiao, G.Y. Xiao, H. Xiao, S.Y. Xiao, Y.L. Xiao, Z.J. Xiao, C. Xie, X.H. Xie, Y. Xie, Y.G. Xie, Y.H. Xie, Z.P. Xie, T.Y. Xing, C.F. Xu, C.J. Xu, G.F. Xu, H.Y. Xu, Q.J. Xu, X.P. Xu, Y.C. Xu, Z.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, H.J. Yang, H.L. Yang, H.X. Yang, L. Yang, S.L. Yang, Tao Yang, Y.F. Yang, Y.X. Yang, Yifan Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, T. Yu, X.D. Yu, C.Z. Yuan, L. Yuan, S.C. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A.A. Zafar, F.R. Zeng, X. Zeng, Y. Zeng, Y.H. Zhan, A.Q. Zhang, B.L. Zhang, B.X. Zhang, D.H. Zhang, G.Y. Zhang, H. Zhang, H.H. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.X. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L.M. Zhang, L.Q. Zhang, Lei Zhang, P. Zhang, Q.Y. Zhang, Shuihan Zhang, Shulei Zhang, X.D. Zhang, X.M. Zhang, X.Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Yan Zhang, Yao Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, X. Zhong, H. Zhou, L.P. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.Z. Zhou, J. Zhu, K. Zhu, K.J. Zhu, L.X. Zhu, S.H. Zhu, S.Q. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, J.H. Zou, and J. Zu
- Subjects
Dark sector ,Dark photon ,Invisible decays ,Physics ,QC1-999 - Abstract
We report a search for a dark photon using 14.9 fb−1 of e+e− annihilation data taken at center-of-mass energies from 4.13 to 4.60 GeV with the BESIII detector operated at the BEPCII storage ring. The dark photon is assumed to be produced in the radiative annihilation process of e+e− and to predominantly decay into light dark matter particles, which escape from the detector undetected. The mass range from 1.5 to 2.9 GeV is scanned for the dark photon candidate, and no significant signal is observed. The mass dependent upper limits at the 90% confidence level on the coupling strength parameter ϵ for a dark photon coupling with an ordinary photon vary between 1.6×10−3 and 5.7×10−3.
- Published
- 2023
- Full Text
- View/download PDF
36. Search for an axion-like particle in radiative J/ψ decays
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, R. Aliberti, A. Amoroso, M.R. An, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, V. Batozskaya, D. Becker, K. Begzsuren, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, T.T. Chang, W.L. Chang, G.R. Che, G. Chelkov, C. Chen, Chao Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, S.M. Chen, T. Chen, X.R. Chen, X.T. Chen, Y.B. Chen, Y.Q. Chen, Z.J. Chen, W.S. Cheng, S.K. Choi, X. Chu, G. Cibinetto, S.C. Coen, F. Cossio, J.J. Cui, H.L. Dai, J.P. Dai, A. Dbeyssi, R.E. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, S.X. Du, Z.H. Duan, P. Egorov, Y.L. Fan, J. Fang, S.S. Fang, W.X. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, K. Fischer, M. Fritsch, C. Fritzsch, C.D. Fu, Y.W. Fu, H. Gao, Y.N. Gao, Yang Gao, S. Garbolino, I. Garzia, P.T. Ge, Z.W. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y.T. Gu, C.Y. Guan, Z.L. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, X.T. H., W.Y. Han, X.Q. Hao, F.A. Harris, K.K. He, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, T. Holtmann, P.C. Hong, G.Y. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, K.X. Huang, L.Q. Huang, X.T. Huang, Y.P. Huang, T. Hussain, N. Hüsken, W. Imoehl, M. Irshad, J. Jackson, S. Jaeger, S. Janchiv, J.H. Jeong, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, Z.K. Jia, P.C. Jiang, S.S. Jiang, T.J. Jiang, X.S. Jiang, Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, T. Johansson, X. K., S. Kabana, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, A. Khoukaz, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuessner, A. Kupsc, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, A. Lavania, L. Lavezzi, T.T. Lei, Z.H. Lei, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H. Li, H.B. Li, H.J. Li, H.N. Li, Hui Li, J.R. Li, J.S. Li, J.W. Li, Ke Li, L.J. Li, L.K. Li, Lei Li, M.H. Li, P.R. Li, S.X. Li, S.Y. Li, T. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Xiaoyu Li, Y.G. Li, Z.J. Li, Z.X. Li, Z.Y. Li, C. Liang, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.Z. Liao, J. Libby, A. Limphirat, D.X. Lin, T. Lin, B.X. Liu, B.J. Liu, C. Liu, C.X. Liu, D. Liu, F.H. Liu, Fang Liu, Feng Liu, G.M. Liu, H. Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.L. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, L.C. Liu, Lu Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.K. Liu, W.M. Liu, X. Liu, Y. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, Z.H. Lu, C.L. Luo, M.X. Luo, T. Luo, X.L. Luo, X.R. Lyu, Y.F. Lyu, F.C. Ma, H.L. Ma, J.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.Y. Ma, Y. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, H. Miao, T.J. Min, R.E. Mitchell, X.H. Mo, N.Yu. Muchnoi, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, Y. Niu, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y.P. Pei, M. Pelizaeus, H.P. Peng, K. Peters, J.L. Ping, R.G. Ping, S. Plura, S. Pogodin, V. Prasad, F.Z. Qi, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.B. Qian, C.F. Qiao, J.J. Qin, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, C.F. Redmer, K.J. Ren, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, S.N. Ruan, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K.Y. Shan, W. Shan, X.Y. Shan, J.F. Shangguan, L.G. Shao, M. Shao, C.P. Shen, H.F. Shen, W.H. Shen, X.Y. Shen, B.A. Shi, H.C. Shi, J.Y. Shi, Q.Q. Shi, R.S. Shi, X. Shi, J.J. Song, T.Z. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, F. Stieler, Y.J. Su, G.B. Sun, G.X. Sun, H. Sun, H.K. Sun, J.F. Sun, K. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, Y. Sun, Y.J. Sun, Y.Z. Sun, Z.T. Sun, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, Y.A. Tang, L.Y. Tao, Q.T. Tao, M. Tat, J.X. Teng, V. Thoren, W.H. Tian, Y. Tian, Z.F. Tian, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, F. Wang, H.J. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, Meng Wang, S. Wang, T. Wang, T.J. Wang, W. Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.J. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.H. Wang, Y.N. Wang, Y.Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z.L. Wang, Z.Y. Wang, Ziyi Wang, D. Wei, D.H. Wei, F. Weidner, S.P. Wen, C.W. Wenzel, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, X.H. Wu, Y. Wu, Y.J. Wu, Z. Wu, L. Xia, X.M. Xian, T. Xiang, D. Xiao, G.Y. Xiao, H. Xiao, S.Y. Xiao, Y.L. Xiao, Z.J. Xiao, C. Xie, X.H. Xie, Y. Xie, Y.G. Xie, Y.H. Xie, Z.P. Xie, T.Y. Xing, C.F. Xu, C.J. Xu, G.F. Xu, H.Y. Xu, Q.J. Xu, X.P. Xu, Y.C. Xu, Z.P. Xu, F. Yan, L. Yan, W.B. Yan, W.C. Yan, X.Q. Yan, H.J. Yang, H.L. Yang, H.X. Yang, Tao Yang, Y. Yang, Y.F. Yang, Y.X. Yang, Yifan Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, T. Yu, X.D. Yu, C.Z. Yuan, L. Yuan, S.C. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A.A. Zafar, F.R. Zeng, X. Zeng, Y. Zeng, X.Y. Zhai, Y.H. Zhan, A.Q. Zhang, B.L. Zhang, B.X. Zhang, D.H. Zhang, G.Y. Zhang, H. Zhang, H.H. Zhang, H.Q. Zhang, H.Y. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.X. Zhang, J.Y. Zhang, J.Z. Zhang, Jiawei Zhang, L.M. Zhang, L.Q. Zhang, Lei Zhang, P. Zhang, Q.Y. Zhang, Shuihan Zhang, Shulei Zhang, X.D. Zhang, X.M. Zhang, X.Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Yan Zhang, Yao Zhang, Z.H. Zhang, Z.L. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, W.J. Zheng, Y.H. Zheng, B. Zhong, X. Zhong, H. Zhou, L.P. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.Z. Zhou, J. Zhu, K. Zhu, K.J. Zhu, L. Zhu, L.X. Zhu, S.H. Zhu, S.Q. Zhu, T.J. Zhu, W.J. Zhu, Y.C. Zhu, Z.A. Zhu, J.H. Zou, and J. Zu
- Subjects
BESIII ,Axion-like particle ,Pseudo-Goldstone boson ,Physics ,QC1-999 - Abstract
We search for an axion-like particle (ALP) a through the process ψ(3686)→π+π−J/ψ, J/ψ→γa, a→γγ in a data sample of (2.71±0.01)×109 ψ(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψ→γa and the ALP-photon coupling constant gaγγ are set at 95% confidence level in the mass range of 0.165≤ma≤2.84GeV/c2. The limits on B(J/ψ→γa) range from 8.3×10−8 to 1.8×10−6 over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165≤ma≤1.468GeV/c2.
- Published
- 2023
- Full Text
- View/download PDF
37. Research on BOC Signal Characteristics and Code Acquisition Methods
- Author
-
P. Xu, D.W Cheng, Y.J Ma, and J.X Yang
- Subjects
Spread spectrum ,Crosstalk ,Positioning system ,Computer science ,Binary offset carrier modulation ,Code tracking ,Electronic engineering ,Code acquisition ,Signal acquisition ,Phase-shift keying - Abstract
The new generation of navigating and positioning system which used a more effective BOC modulation, has more advantages such as smaller crosstalk with BPSK, anti-fading ability etc. This paper describes the principle, performance of binary offset carrier (BOC) modulation, and the characteristics of spread spectrum signal; it analyzes the highly efficient method of acquisition and code tracking, which provides a new train of thought for enhancing signal acquisition speed, effectively reducing the probability of the wrong lock and saving hardware cost. Keywords-BOC; acquisition; simulation
- Published
- 2015
38. Hydrothermal synthesis of (Bi1/2Na1/2)TiO3 piezoelectric ceramics
- Author
-
Y.J. Ma, J.H. Cho, Young-Gi Lee, and B.I. Kim
- Subjects
Aqueous solution ,Materials science ,Scanning electron microscope ,chemistry.chemical_element ,Mineralogy ,Condensed Matter Physics ,Nanocrystalline material ,Hydrothermal circulation ,Field emission microscopy ,chemistry ,Hydrothermal synthesis ,General Materials Science ,Nuclear chemistry ,Titanium ,Diffractometer - Abstract
Hydrothermal synthesis of (Bi 1/2 Na 1/2 )TiO 3 -based ceramics for lead-free piezoelectric ceramics was studied, because the hydrothermal method (HTM) had been utilized for commercial production of powders. To synthesize (Bi 1/2 Na 1/2 )TiO 3 -based ceramics powder by hydrothermal process using mixed aqueous solution of metal salts, Bi(NO 3 ) 3 , Ti-isopropoxide (Ti(O- i -C 3 H 7 ) 4 ), titanium tetra- n -butoxide (Ti(O- n -C 4 H 9 ) 4 ) and Na 2 CO 3 were used as starting materials. Two kinds of mineralizers, NaOH and KOH, were used. Hydrothermal reaction temperature was in the range from 160 °C to 200 °C. We investigated the effects of hydrothermal temperature, time, amount of mineralizers, pH, and solubility in solutions on phase formation and the properties of powders. Synthesized (Bi 1/2 Na 1/2 )TiO 3 -based were analyzed with an X-ray diffractometer (XRD), a scanning electron microscope (SEM) and a field emission scanning electron microscope (FESEM). Alkaline concentration had a great effect on the phase formation and morphology of the powders. (Bi 1/2 Na 1/2 )TiO 3 -based nanocrystalline particles with perovskite structure were successfully synthesized.
- Published
- 2006
39. Shape Optimization of Cutouts in Laminated Composite Plates Using Solid Element
- Author
-
Y.J. Ma, Jung Yul Park, and Seok Yoon Han
- Subjects
Materials science ,business.industry ,Mechanical Engineering ,Composite number ,Structural engineering ,Volume control ,Mechanics of Materials ,Composite plate ,Failure index ,General Materials Science ,Shape optimization ,Composite material ,Element (category theory) ,Anisotropy ,business ,Volume (compression) - Abstract
Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter was chosen as Tsai-Hill failure index for shape optimization. In order to verify the validity of the obtained optimal shapes, the changes of the maximum Tsai-Hill failure index were examined for each load condition and cutouts. The following conclusions were obtained in this study; 1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in anisotropic laminate composite, 2) The optimal three dimensional shapes of the various load conditions and cutouts were obtained, 3) The maximum Tsai-Hill failure index was reduced up to 68% when shape optimization was performed under the initial volume by volume control of growth-strain method.
- Published
- 2005
40. Hopping conduction in single ZnO nanowires
- Author
-
Changzhi Gu, Ze Zhang, Y.J. Ma, Feng Zhou, Aizi Jin, and Li Lu
- Subjects
Materials science ,Condensed matter physics ,Mechanical Engineering ,Nanowire ,Bioengineering ,General Chemistry ,Chemical vapor deposition ,Carbon nanotube ,Conductivity ,Atmospheric temperature range ,Thermal conduction ,law.invention ,Mechanics of Materials ,Electrical resistivity and conductivity ,law ,Coulomb ,General Materials Science ,Electrical and Electronic Engineering - Abstract
ZnO nanowires were synthesized by chemical vapour deposition (CVD). The dc electrical conductivity of a single ZnO nanowire was investigated over a wide temperature range from 300 to 6 K. It is found that the temperature dependence of conductivity follows the relation . The conductivity data suggest that the dominant conduction mechanism is Efros–Shklovskii variable-range hopping conduction. The strong electron–electron interaction in the nanowire is also proved by the I–V and d I/d V curves, on which there emerges a Coulomb gap-like structure at low temperatures.
- Published
- 2005
41. Shape Optimization in Laminated Composite Plates by Growth-Strain Method, Part Two - Stress Control
- Author
-
Seok Yoon Han, J.Y. Park, and Y.J. Ma
- Subjects
Mechanics of Materials ,Mechanical Engineering ,General Materials Science - Abstract
Stress control of the growth-strain method was applied to shape optimization of multiple cutouts in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value, as volume control of the growth-strain method. In this study, of particular interest is to see whether stress control of the growth-strain method developed for shape optimization in isotropic media would work for laminated composite plates. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions. As a result, it was verified that stress control of the growth-strain method also worked very well for multiple cutouts optimization in laminated composite plates.
- Published
- 2004
42. Electrical conductivity of hollow polyaniline microspheres synthesized by a self-assembly method
- Author
-
Zhixiang Wei, Changzhi Gu, Yunze Long, Lijuan Zhang, Meixiang Wan, Y.J. Ma, Ze Zhang, Aizi Jin, and Zhaojia Chen
- Subjects
chemistry.chemical_classification ,Conductive polymer ,Materials science ,Physics and Astronomy (miscellaneous) ,Magnetoresistance ,Polymer ,Conductivity ,Sulfonic acid ,Polypyrrole ,chemistry.chemical_compound ,Chemical engineering ,chemistry ,Electrical resistivity and conductivity ,Polymer chemistry ,Polyaniline - Abstract
In this letter, we report the electrical properties of hollow polyaniline (PANI) microspheres. β-naphthalene sulfonic acid (NSA) and salicylic acid (SA) doped PANI microspheres were synthesized by a self-assembly method. The room-temperature conductivity is 8.6×10−2 S/cm for PANI–NSA microspheres (0.8–2 μm in outer diameter) and 5.6×10−4 S/cm for PANI–SA microspheres (3–7 μm in outer diameter). The conductivity of an individual PANI–SA microsphere is measured directly by a two-probe technique, about 8×10−2 S/cm (which is two orders of magnitude higher than that of a PANI–SA microsphere’s pellet). The measurements of conductivity, I–V curve, and magnetoresistance demonstrate that the electrical properties of PANI microspheres are dominated by the intersphere contacts due to the sample’s microscopic inhomogeneity.
- Published
- 2004
43. Metamorphic InAs1-xBix/In0.83Al0.17As quantum well structures on InP for mid-infrared emission
- Author
-
X.Y. Chen, Yi Gu, Ben Du, Yonggang Zhang, Yulei Shi, Y.J. Ma, W.Y. Ji, and S. P. Xi
- Subjects
010302 applied physics ,Diffraction ,Photoluminescence ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Metamorphic rock ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Bismuth ,chemistry ,Transmission electron microscopy ,0103 physical sciences ,X-ray crystallography ,Optoelectronics ,0210 nano-technology ,business ,Spectroscopy ,Quantum well - Abstract
This work reports on InP-based metamorphic quantum well structures with bismuth incorporation for mid-infrared applications. InAs1-xBix quantum well structures have been grown on InP-based metamorphic In0.83Al0.17As buffers and photoluminescence beyond 3.1 μm has been achieved at 300 K, which is longer than the referenced InAs quantum well. X-ray diffraction, cross-sectional transmission electron microscopy, and energy dispersive X-ray spectroscopy measurements reveal clear interfaces of InAsBi quantum well with low bismuth, while more defects and bismuth inhomogeneity were observed as more bismuth was incorporated.
- Published
- 2016
44. Comparison on Different Evaluation Methods of Heavy Metal Pollution----- A Case for K1 Columnar Samples of Yalu River Estuary Watercourse
- Author
-
J.X. Wang, R.X. Li, Hongjun Li, Y. Cheng, and Y.J. Ma
- Subjects
Hydrology ,Pollution ,geography ,Index (economics) ,geography.geographical_feature_category ,media_common.quotation_subject ,Sediment ,Heavy metals ,Estuary ,Metal pollution ,Evaluation methods ,Environmental science ,Ecological risk ,media_common - Abstract
Heavy metals were determined in columnar sediment samples of the Yalu River estuary watercourse. The environmental status was assessed by using the pollution load index, geologic cumulative index, potential ecological harm index and Nemerow index. It is shown that the geologic cumulative index and Nemerow index show a low level of heavy metal pollution indicating that the pollution of K1 columnar samples is not serious. The results of the ecological risk index and the pollution load index are consistent by indicating a medium pollution degree of columnar sediments of the Yalu River estuary watercourse.
- Published
- 2016
45. Electrical conductivity of a single conducting polyaniline nanotube
- Author
-
Lijuan Zhang, Nanlin Wang, Y.J. Ma, Zhaojia Chen, Ze Zhang, Yunze Long, and Meixiang Wan
- Subjects
Conductive polymer ,Nanotube ,Materials science ,Physics and Astronomy (miscellaneous) ,Polyaniline nanofibers ,Contact resistance ,Nanotechnology ,Conductivity ,Variable-range hopping ,chemistry.chemical_compound ,chemistry ,Electrical resistivity and conductivity ,Polyaniline ,Composite material - Abstract
We report the electrical properties of a single conducting polyaniline nanotube measured by a standard four-terminal technique. Camphor sulfonic acid doped polyaniline nanotubes were self-assembled by a template-free method. The directly measured conductivity of the single polyaniline nanotube is very high (∼31.4 S/cm), and its temperature dependence follows the three-dimensional variable range hopping model. However, the bulk conductivity of the polyaniline nanotube pellets is much smaller than the nanotube itself (only 3.5×10−2 S/cm) and ln ρ(T) is linear in T−1/2, which is due to the large intertubular contact resistance. These results will help us to understand the conduction mechanism in conducting polymers.
- Published
- 2003
46. Measurement of the e+e−→Σ0Σ¯0 cross sections at center-of-mass energies from 2.3864 to 3.0200GeV
- Author
-
M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, A. Amoroso, Q. An, Y. Bai, O. Bakina, R. Baldini Ferroli, I. Balossino, Y. Ban, K. Begzsuren, J.V. Bennett, N. Berger, M. Bertani, D. Bettoni, F. Bianchi, J. Biernat, J. Bloms, A. Bortone, I. Boyko, R.A. Briere, H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, J.F. Chang, W.L. Chang, G. Chelkov, D.Y. Chen, G. Chen, H.S. Chen, M.L. Chen, S.J. Chen, X.R. Chen, Y.B. Chen, W. Cheng, G. Cibinetto, F. Cossio, X.F. Cui, H.L. Dai, J.P. Dai, X.C. Dai, A. Dbeyssi, R.B. de Boer, D. Dedovich, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L.Y. Dong, M.Y. Dong, S.X. Du, J. Fang, S.S. Fang, Y. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, M. Fritsch, C.D. Fu, Y. Fu, X.L. Gao, Y. Gao, Y.G. Gao, I. Garzia, E.M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W.X. Gong, W. Gradl, M. Greco, L.M. Gu, M.H. Gu, S. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, R.P. Guo, Y.P. Guo, A. Guskov, S. Han, T.T. Han, T.Z. Han, X.Q. Hao, F.A. Harris, K.L. He, F.H. Heinsius, T. Held, Y.K. Heng, M. Himmelreich, T. Holtmann, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, T. Hu, Y. Hu, G.S. Huang, L.Q. Huang, X.T. Huang, Z. Huang, N. Huesken, T. Hussain, W. Ikegami Andersson, W. Imoehl, M. Irshad, S. Jaeger, S. Janchiv, Q. Ji, Q.P. Ji, X.B. Ji, X.L. Ji, H.B. Jiang, X.S. Jiang, X.Y. Jiang, J.B. Jiao, Z. Jiao, S. Jin, Y. Jin, T. Johansson, N. Kalantar-Nayestanaki, X.S. Kang, R. Kappert, M. Kavatsyuk, B.C. Ke, I.K. Keshk, A. Khoukaz, P. Kiese, R. Kiuchi, R. Kliemt, L. Koch, O.B. Kolcu, B. Kopf, M. Kuemmel, M. Kuessner, A. Kupsc, M.G. Kurth, W. Kühn, J.J. Lane, J.S. Lange, P. Larin, L. Lavezzi, H. Leithoff, M. Lellmann, T. Lenz, C. Li, C.H. Li, Cheng Li, D.M. Li, F. Li, G. Li, H.B. Li, H.J. Li, J.L. Li, J.Q. Li, Ke Li, L.K. Li, Lei Li, P.L. Li, P.R. Li, S.Y. Li, W.D. Li, W.G. Li, X.H. Li, X.L. Li, Z.B. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, L.Z. Liao, J. Libby, C.X. Lin, B. Liu, B.J. Liu, C.X. Liu, D. Liu, D.Y. Liu, F.H. Liu, Fang Liu, Feng Liu, H.B. Liu, H.M. Liu, Huanhuan Liu, Huihui Liu, J.B. Liu, J.Y. Liu, K. Liu, K.Y. Liu, Ke Liu, L. Liu, Q. Liu, S.B. Liu, Shuai Liu, T. Liu, X. Liu, Y.B. Liu, Z.A. Liu, Z.Q. Liu, Y.F. Long, X.C. Lou, F.X. Lu, H.J. Lu, J.D. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.P. Lu, C.L. Luo, M.X. Luo, P.W. Luo, T. Luo, X.L. Luo, S. Lusso, X.R. Lyu, F.C. Ma, H.L. Ma, L.L. Ma, M.M. Ma, Q.M. Ma, R.Q. Ma, R.T. Ma, X.N. Ma, X.X. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, M. Maggiora, S. Maldaner, S. Malde, Q.A. Malik, A. Mangoni, Y.J. Mao, Z.P. Mao, S. Marcello, Z.X. Meng, J.G. Messchendorp, G. Mezzadri, T.J. Min, R.E. Mitchell, X.H. Mo, Y.J. Mo, N.Yu. Muchnoi, H. Muramatsu, S. Nakhoul, Y. Nefedov, F. Nerling, I.B. Nikolaev, Z. Ning, S. Nisar, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, P. Patteri, M. Pelizaeus, H.P. Peng, K. Peters, J. Pettersson, J.L. Ping, R.G. Ping, A. Pitka, R. Poling, V. Prasad, H. Qi, H.R. Qi, M. Qi, T.Y. Qi, S. Qian, W.-B. Qian, Z. Qian, C.F. Qiao, L.Q. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, S.Q. Qu, K.H. Rashid, K. Ravindran, C.F. Redmer, A. Rivetti, V. Rodin, M. Rolo, G. Rong, Ch. Rosner, M. Rump, A. Sarantsev, M. Savrié, Y. Schelhaas, C. Schnier, K. Schoenning, D.C. Shan, W. Shan, X.Y. Shan, M. Shao, C.P. Shen, P.X. Shen, X.Y. Shen, H.C. Shi, R.S. Shi, X. Shi, X.D. Shi, J.J. Song, Q.Q. Song, W.M. Song, Y.X. Song, S. Sosio, S. Spataro, F.F. Sui, G.X. Sun, J.F. Sun, L. Sun, S.S. Sun, T. Sun, W.Y. Sun, Y.J. Sun, Y.K. Sun, Y.Z. Sun, Z.T. Sun, Y.H. Tan, Y.X. Tan, C.J. Tang, G.Y. Tang, J. Tang, V. Thoren, B. Tsednee, I. Uman, B. Wang, B.L. Wang, C.W. Wang, D.Y. Wang, H.P. Wang, K. Wang, L.L. Wang, M. Wang, M.Z. Wang, Meng Wang, W.H. Wang, W.P. Wang, X. Wang, X.F. Wang, X.L. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.Q. Wang, Z. Wang, Z.Y. Wang, Ziyi Wang, Zongyuan Wang, T. Weber, D.H. Wei, P. Weidenkaff, F. Weidner, S.P. Wen, D.J. White, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, J.F. Wu, L.H. Wu, L.J. Wu, X. Wu, Z. Wu, L. Xia, H. Xiao, S.Y. Xiao, Y.J. Xiao, Z.J. Xiao, X.H. Xie, Y.G. Xie, Y.H. Xie, T.Y. Xing, X.A. Xiong, G.F. Xu, J.J. Xu, Q.J. Xu, W. Xu, X.P. Xu, L. Yan, W.B. Yan, W.C. Yan, Xu Yan, H.J. Yang, H.X. Yang, L. Yang, R.X. Yang, S.L. Yang, Y.H. Yang, Y.X. Yang, Yifan Yang, Zhi Yang, M. Ye, M.H. Ye, J.H. Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, T. Yu, C.Z. Yuan, W. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, A. Yuncu, A.A. Zafar, Y. Zeng, B.X. Zhang, Guangyi Zhang, H.H. Zhang, H.Y. Zhang, J.L. Zhang, J.Q. Zhang, J.W. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, Jiawei Zhang, L. Zhang, Lei Zhang, S. Zhang, S.F. Zhang, T.J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Y.T. Zhang, Yan Zhang, Yao Zhang, Yi Zhang, Z.H. Zhang, Z.Y. Zhang, G. Zhao, J. Zhao, J.Y. Zhao, J.Z. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S.J. Zhao, Y.B. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, J.P. Zheng, Y. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, L.P. Zhou, Q. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, S.H. Zhu, W.J. Zhu, X.L. Zhu, Y.C. Zhu, Z.A. Zhu, B.S. Zou, and J.H. Zou
- Subjects
BESIII ,Σ0 hyperon ,Born cross section ,Form factor ,Physics ,QC1-999 - Abstract
The Born cross sections of e+e−→Σ0Σ¯0 are measured at center-of-mass energies from 2.3864 to 3.0200 GeV using data samples with an integrated luminosity of 328.5 pb−1 collected with the BESIII detector operating at the BEPCII collider. The analysis makes use of a novel reconstruction method for energies near production threshold, while a single-tag method is employed at other center-of-mass energies. The measured cross sections are consistent with earlier results from BaBar, with a substantially improved precision. The cross-section lineshape can be well described by a perturbative QCD-driven energy function. In addition, the effective form factors of the Σ0 baryon are determined. The results provide precise experimental input for testing various theoretical predictions.
- Published
- 2022
- Full Text
- View/download PDF
47. Effect of bismuth surfactant on InP-based highly strained InAs/InGaAs triangular quantum wells
- Author
-
Xingyou Chen, S. P. Xi, Y.J. Ma, Yi Gu, Ben Du, and Yonggang Zhang
- Subjects
Materials science ,Nanostructure ,Photoluminescence ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,chemistry.chemical_element ,Heterojunction ,Bismuth ,Gallium arsenide ,chemistry.chemical_compound ,chemistry ,Surface roughness ,Luminescence ,Quantum well - Abstract
We report the effect of Bi surfactant on the properties of highly strained InAs/InGaAs triangular quantum wells grown on InP substrates. Reduced surface roughness, improved heterostructure interfaces and enhanced photoluminescence intensity at 2.2 μm are observed by moderate Bi-mediated growth. The nonradiative processes are analysed based on temperature-dependent photoluminescence. It is confirmed that Bi incorporation is insignificant in the samples, whereas excessive Bi flux during the growth results in deteriorated performance. The surfactant effect of Bi is promising to improve InP-based highly strained structures while the excess of Bi flux needs to be avoided.
- Published
- 2015
48. InP-based type-I quantum well lasers up to 2.9 μm at 230 K in pulsed mode on a metamorphic buffer
- Author
-
Xingyou Chen, Yi Gu, Luchun Zhou, S. P. Xi, Yonggang Zhang, Ben Du, and Y.J. Ma
- Subjects
Nanostructure ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Physics::Optics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Laser ,law.invention ,Condensed Matter::Materials Science ,Wavelength ,Quantum dot laser ,law ,Optoelectronics ,Electric current ,business ,Lasing threshold ,Current density ,Quantum well - Abstract
This work reports on up to 2.9 μm lasing at 230 K of InP-based type-I quantum well lasers. This record long wavelength lasing is achieved by applying InP-based Sb-free structures with eight periods of strain-compensated InAs quantum wells grown on metamorphic In0.8Al0.2As template layers. The continuous-wave threshold current density is 797 A/cm2 and the idealized extrapolated threshold current density for infinite cavity length is as low as 58 A/cm2 per quantum well at 120 K. This scheme is a promising pathway for extending the wavelength range of type-I quantum well lasers on InP substrates.
- Published
- 2015
49. Shape Optimization of Cutouts in Laminated Composite Plates Using Solid Element
- Author
-
Seok Yoon Han, Y.J. Ma, and J.Y. Park
- Published
- 2005
50. Quercetin improves immune function in Arbor Acre broilers through activation of NF-κB signaling pathway
- Author
-
J.X. Yang, T.C. Maria, B. Zhou, F.L. Xiao, M. Wang, Y.J. Mao, and Y. Li
- Subjects
quercetin ,broiler ,immune organs ,immune molecules ,gene expression ,Animal culture ,SF1-1100 - Abstract
ABSTRACT: Quercetin, the main component of flavonoids, has a wide range of biological actions. Quercetin can be made into a variety of additives for practice, because of the stable chemical structure and water-soluble derivatives. This study was intended to explore the effects of quercetin on immune function and its regulatory mechanism in Arbor Acre broiler to provide a practical basis for improving poultry immune function and figure out the optimum supplementation as functional feed additives. A total of 240 one-day-old healthy Arbor Acre broilers, similar in body weight, were randomly allotted to 4 treatments with 6 replicates, 10 broilers in each replicate and fed with diets containing quercetin at 0, 0.02, 0.04, and 0.06% for 6 wk. Blood and immune organs (spleen, thymus, and bursa) were collected from chickens at the end of the experiment. Growth performance, immune organs indexes, contents of serum immune molecules, splenic T lymphocyte proliferative responses, and expression of immune related genes were evaluated. The results showed that dietary quercetin had no significant effect (P > 0.05) on growth performance of broilers. Compared with control, 0.06% quercetin supplementation in diet significantly increased spleen index and thymus index (P < 0.05). It also increased the secretion of immune molecules including immunoglobulin A (IgA), interleukin-4 (IL-4) (P < 0.001), immunoglobulin M (IgM) (P = 0.007), complement component 4 (C4) (P = 0.001), and tumor necrosis factor-α (TNF-α) (P < 0.05). On the other hand, 0.02% quercetin supplementation significantly increased complement component 3 (C3) (P < 0.05). Additionally, both 0.04 and 0.06% quercetin supplementation significantly increased expression of TNF-α, TNF receptor associated factor-2 (TRAF-2), TNF receptor superfamily member 1B (TNFRSF1B), nuclear factor kappa-B p65 subunit (NF-κBp65), and interferon-γ (IFN-γ) mRNA (P < 0.05), and expression of NF-κB inhibitor-alpha (IκB-α) mRNA were significantly decreased (P < 0.05). Thus, quercetin improved immune function via NF-κB signaling pathway triggered by TNF-α.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.