1,408 results on '"Yadav, Vikas"'
Search Results
2. Content analysis of editorial excerpts in the times of India and the hindu
- Author
-
Yadav, Vikas and Sabharwal, Tarjeet
- Published
- 2021
- Full Text
- View/download PDF
3. CopySpec: Accelerating LLMs with Speculative Copy-and-Paste Without Compromising Quality
- Author
-
Dumitru, Razvan-Gabriel, Yang, Minglai, Yadav, Vikas, and Surdeanu, Mihai
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,I.2.7 ,I.2.0 - Abstract
We introduce CopySpec, an innovative technique designed to tackle the inefficiencies LLMs face when generating responses that closely resemble previous outputs. CopySpec identifies repeated sequences in the model's chat history and speculates that the same tokens will follow, enabling seamless copying without compromising output quality or requiring additional GPU memory. To evaluate the effectiveness of our approach, we conducted experiments using five LLMs and five datasets: MT-Bench, CNN/DM, GSM-8K, HumanEval, and our newly created dataset, MT-Redundant. MT-Redundant, introduced in this paper, transforms the second turn of MT-Bench into a request for variations of the first turn's answer, simulating real-world scenarios where users request modifications to prior responses. Our results demonstrate significant speed-ups: up to 2.35x on CNN/DM, 3.08x on the second turn of select MT-Redundant categories, and 2.66x on the third turn of GSM-8K's self-correction tasks. Moreover, we show that CopySpec integrates seamlessly with speculative decoding, yielding an average 49% additional speed-up over speculative decoding for the second turn of MT-Redundant across all eight categories. While LLMs, even with speculative decoding, suffer from slower inference as context sizes grow, CopySpec leverages the expanded context to accelerate inference, making it faster as the context size increases. Our code and dataset are publicly available at https://github.com/RazvanDu/CopySpec., Comment: 33 pages, 18 figures, 19 tables
- Published
- 2025
4. An Overview on Under Researched and Neglected Emerging Parasitic Zoonosis
- Author
-
Yadav, Anish, Rafiqi, Shafiya I., Yadav, Vikas, Godara, Rajesh, and Katoch, Rajesh
- Published
- 2021
- Full Text
- View/download PDF
5. Auto-Cypher: Improving LLMs on Cypher generation via LLM-supervised generation-verification framework
- Author
-
Tiwari, Aman, Malay, Shiva Krishna Reddy, Yadav, Vikas, Hashemi, Masoud, and Madhusudhan, Sathwik Tejaswi
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Information Retrieval ,Computer Science - Machine Learning - Abstract
Graph databases like Neo4j are gaining popularity for handling complex, interconnected data, over traditional relational databases in modeling and querying relationships. While translating natural language into SQL queries is well-researched, generating Cypher queries for Neo4j remains relatively underexplored. In this work, we present an automated, LLM-Supervised, pipeline to generate high-quality synthetic data for Text2Cypher. Our Cypher data generation pipeline introduces LLM-As-Database-Filler, a novel strategy for ensuring Cypher query correctness, thus resulting in high quality generations. Using our pipeline, we generate high quality Text2Cypher data - SynthCypher containing 29.8k instances across various domains and queries with varying complexities. Training open-source LLMs like LLaMa-3.1-8B, Mistral-7B, and QWEN-7B on SynthCypher results in performance gains of up to 40% on the Text2Cypher test split and 30% on the SPIDER benchmark, adapted for graph databases., Comment: Accepted at NAACL 2025 main conference
- Published
- 2024
6. Change Is the Only Constant: Dynamic LLM Slicing based on Layer Redundancy
- Author
-
Dumitru, Razvan-Gabriel, Clotan, Paul-Ioan, Yadav, Vikas, Peteleaza, Darius, and Surdeanu, Mihai
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,I.2.7 ,I.2.0 - Abstract
This paper introduces a novel model compression approach through dynamic layer-specific pruning in Large Language Models (LLMs), enhancing the traditional methodology established by SliceGPT. By transitioning from constant to dynamic slicing, our method leverages the newly proposed Layer Redundancy (LR) score, which assesses how much change each layer changes its input by measuring the cosine similarity of the input to the output of the layer. We use this score to prune parts of individual layers based on redundancy in such a way that the average pruned percentage for all layers is a fixed value. We conducted extensive experiments using models like Llama3-8B and Mistral-7B on multiple datasets, evaluating different slicing bases and percentages to determine optimal configurations that balance efficiency and performance. Our findings show that our dynamic slicing approach not only maintains but, in many cases, enhances model performance compared to the baseline established by constant slicing methods. For instance, in several settings, we see performance improvements of up to 5% over the SliceGPT baseline. Additionally, a perplexity decrease by as much as 7% was observed across multiple benchmarks, validating the effectiveness of our method. The code, model weights, and datasets are open-sourced at https://github.com/RazvanDu/DynamicSlicing., Comment: Accepted at EMNLP Findings 2024
- Published
- 2024
7. Prompting with Phonemes: Enhancing LLM Multilinguality for non-Latin Script Languages
- Author
-
Nguyen, Hoang, Mahajan, Khyati, Yadav, Vikas, Yu, Philip S., Hashemi, Masoud, and Maheshwary, Rishabh
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Multilingual LLMs have achieved remarkable benchmark performance, but we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
- Published
- 2024
8. Gemma 2: Improving Open Language Models at a Practical Size
- Author
-
Gemma Team, Riviere, Morgane, Pathak, Shreya, Sessa, Pier Giuseppe, Hardin, Cassidy, Bhupatiraju, Surya, Hussenot, Léonard, Mesnard, Thomas, Shahriari, Bobak, Ramé, Alexandre, Ferret, Johan, Liu, Peter, Tafti, Pouya, Friesen, Abe, Casbon, Michelle, Ramos, Sabela, Kumar, Ravin, Lan, Charline Le, Jerome, Sammy, Tsitsulin, Anton, Vieillard, Nino, Stanczyk, Piotr, Girgin, Sertan, Momchev, Nikola, Hoffman, Matt, Thakoor, Shantanu, Grill, Jean-Bastien, Neyshabur, Behnam, Bachem, Olivier, Walton, Alanna, Severyn, Aliaksei, Parrish, Alicia, Ahmad, Aliya, Hutchison, Allen, Abdagic, Alvin, Carl, Amanda, Shen, Amy, Brock, Andy, Coenen, Andy, Laforge, Anthony, Paterson, Antonia, Bastian, Ben, Piot, Bilal, Wu, Bo, Royal, Brandon, Chen, Charlie, Kumar, Chintu, Perry, Chris, Welty, Chris, Choquette-Choo, Christopher A., Sinopalnikov, Danila, Weinberger, David, Vijaykumar, Dimple, Rogozińska, Dominika, Herbison, Dustin, Bandy, Elisa, Wang, Emma, Noland, Eric, Moreira, Erica, Senter, Evan, Eltyshev, Evgenii, Visin, Francesco, Rasskin, Gabriel, Wei, Gary, Cameron, Glenn, Martins, Gus, Hashemi, Hadi, Klimczak-Plucińska, Hanna, Batra, Harleen, Dhand, Harsh, Nardini, Ivan, Mein, Jacinda, Zhou, Jack, Svensson, James, Stanway, Jeff, Chan, Jetha, Zhou, Jin Peng, Carrasqueira, Joana, Iljazi, Joana, Becker, Jocelyn, Fernandez, Joe, van Amersfoort, Joost, Gordon, Josh, Lipschultz, Josh, Newlan, Josh, Ji, Ju-yeong, Mohamed, Kareem, Badola, Kartikeya, Black, Kat, Millican, Katie, McDonell, Keelin, Nguyen, Kelvin, Sodhia, Kiranbir, Greene, Kish, Sjoesund, Lars Lowe, Usui, Lauren, Sifre, Laurent, Heuermann, Lena, Lago, Leticia, McNealus, Lilly, Soares, Livio Baldini, Kilpatrick, Logan, Dixon, Lucas, Martins, Luciano, Reid, Machel, Singh, Manvinder, Iverson, Mark, Görner, Martin, Velloso, Mat, Wirth, Mateo, Davidow, Matt, Miller, Matt, Rahtz, Matthew, Watson, Matthew, Risdal, Meg, Kazemi, Mehran, Moynihan, Michael, Zhang, Ming, Kahng, Minsuk, Park, Minwoo, Rahman, Mofi, Khatwani, Mohit, Dao, Natalie, Bardoliwalla, Nenshad, Devanathan, Nesh, Dumai, Neta, Chauhan, Nilay, Wahltinez, Oscar, Botarda, Pankil, Barnes, Parker, Barham, Paul, Michel, Paul, Jin, Pengchong, Georgiev, Petko, Culliton, Phil, Kuppala, Pradeep, Comanescu, Ramona, Merhej, Ramona, Jana, Reena, Rokni, Reza Ardeshir, Agarwal, Rishabh, Mullins, Ryan, Saadat, Samaneh, Carthy, Sara Mc, Cogan, Sarah, Perrin, Sarah, Arnold, Sébastien M. R., Krause, Sebastian, Dai, Shengyang, Garg, Shruti, Sheth, Shruti, Ronstrom, Sue, Chan, Susan, Jordan, Timothy, Yu, Ting, Eccles, Tom, Hennigan, Tom, Kocisky, Tomas, Doshi, Tulsee, Jain, Vihan, Yadav, Vikas, Meshram, Vilobh, Dharmadhikari, Vishal, Barkley, Warren, Wei, Wei, Ye, Wenming, Han, Woohyun, Kwon, Woosuk, Xu, Xiang, Shen, Zhe, Gong, Zhitao, Wei, Zichuan, Cotruta, Victor, Kirk, Phoebe, Rao, Anand, Giang, Minh, Peran, Ludovic, Warkentin, Tris, Collins, Eli, Barral, Joelle, Ghahramani, Zoubin, Hadsell, Raia, Sculley, D., Banks, Jeanine, Dragan, Anca, Petrov, Slav, Vinyals, Oriol, Dean, Jeff, Hassabis, Demis, Kavukcuoglu, Koray, Farabet, Clement, Buchatskaya, Elena, Borgeaud, Sebastian, Fiedel, Noah, Joulin, Armand, Kenealy, Kathleen, Dadashi, Robert, and Andreev, Alek
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
In this work, we introduce Gemma 2, a new addition to the Gemma family of lightweight, state-of-the-art open models, ranging in scale from 2 billion to 27 billion parameters. In this new version, we apply several known technical modifications to the Transformer architecture, such as interleaving local-global attentions (Beltagy et al., 2020a) and group-query attention (Ainslie et al., 2023). We also train the 2B and 9B models with knowledge distillation (Hinton et al., 2015) instead of next token prediction. The resulting models deliver the best performance for their size, and even offer competitive alternatives to models that are 2-3 times bigger. We release all our models to the community.
- Published
- 2024
9. Do LLMs Know When to NOT Answer? Investigating Abstention Abilities of Large Language Models
- Author
-
Madhusudhan, Nishanth, Madhusudhan, Sathwik Tejaswi, Yadav, Vikas, and Hashemi, Masoud
- Subjects
Computer Science - Computation and Language - Abstract
Abstention Ability (AA) is a critical aspect of Large Language Model (LLM) reliability, referring to an LLM's capability to withhold responses when uncertain or lacking a definitive answer, without compromising performance. Although previous studies have attempted to improve AA, they lack a standardised evaluation method and remain unsuitable for black-box models where token prediction probabilities are inaccessible. This makes comparative analysis challenging, especially for state-of-the-art closed-source commercial LLMs. This paper bridges this gap by introducing a black-box evaluation approach and a new dataset, Abstain-QA, crafted to rigorously assess AA across varied question types (answerable and unanswerable), domains (well-represented and under-represented), and task types (fact centric and reasoning). We also propose a new confusion matrix, the ''Answerable-Unanswerable Confusion Matrix'' (AUCM) which serves as the basis for evaluating AA, by offering a structured and precise approach for assessment. Finally, we explore the impact of three prompting strategies-Strict Prompting, Verbal Confidence Thresholding, and Chain-of-Thought (CoT)-on improving AA. Our results indicate that even powerful models like GPT-4, Mixtral 8x22b encounter difficulties with abstention; however, strategic approaches such as Strict prompting and CoT can enhance this capability., Comment: 8 pages (excluding limitations, references and appendix) and 5 figures
- Published
- 2024
10. Asymptomatic Rotator Cuff Tears Among the Indian Population: Prevalence, Risk Factors, and Tear Characteristics
- Author
-
Tankala, Jayadev, Parameswaran, Apurve, Yadav, Vikas Kapildeo, Nori, Madhavi, Eachempati, Krishna Kiran, and Apsingi, Sunil
- Published
- 2025
- Full Text
- View/download PDF
11. Drugs Import Procedure in India: A Comprehensive Review
- Author
-
Budhwar, Vikas, Rohilla, Yogesh, Yadav, Vikas, Choudhary, Manjusha, and Pratik
- Published
- 2019
- Full Text
- View/download PDF
12. Genetic variability in acid lime accessions from central Gujarat
- Author
-
Mishra, D. S., Singh, Sanjay, Singh, A. K., and Yadav, Vikas
- Published
- 2018
- Full Text
- View/download PDF
13. Assessment of genetic diversity in guava
- Author
-
Mishra, D.S., Singh, Sanjay, Singh, A.K., Yadav, Vikas, Rao, V.V. Appa, and Saroj, P.L.
- Published
- 2018
- Full Text
- View/download PDF
14. Trends of Demographic Development of BIMARU States in India
- Author
-
Yadav, Vikas
- Published
- 2018
15. Machine learning driven high-resolution Raman spectral generation for accurate molecular feature recognition
- Author
-
Yadav, Vikas, Tiwari, Abhay Kumar, and Siddhanta, Soumik
- Subjects
Physics - Chemical Physics ,Physics - Applied Physics ,Physics - Optics - Abstract
Through the probing of light-matter interactions, Raman spectroscopy provides invaluable insights into the composition, structure, and dynamics of materials, and obtaining such data from portable and cheap instruments is of immense practical relevance. Here, we propose the integration of a Generative Adversarial Network (GAN) with low-resolution Raman spectroscopy with a portable hand-held spectrometer to facilitate concurrent spectral analysis and compound classification. Portable spectrometers generally have a lower resolution, and the Raman signal is usually buried under the background noise. The GAN-based model could not only generate high-resolution data but also reduced the spectral noise significantly. The generated data was used further to train an Artificial Neural Network (ANN)-based model for the classification of organic and pharmaceutical drug molecules. The high-resolution generated Raman data was subsequently used for spectral barcoding for identification of the pharmaceutical drugs. GAN also demonstrated enhanced robustness in extracting weak signals compared to conventional noise removal methods. This integrated system holds the potential for achieving accurate and real-time monitoring of noisy inputs to obtain high throughput output, thereby opening new avenues for applications in different domains. This synergy between spectroscopy and machine learning (ML) facilitates improved data processing, noise reduction, and feature extraction and opens avenues for predictive modeling and automated decision-making using cost-effective portable devices., Comment: 37 Pages
- Published
- 2024
16. Layer-Wise Quantization: A Pragmatic and Effective Method for Quantizing LLMs Beyond Integer Bit-Levels
- Author
-
Dumitru, Razvan-Gabriel, Yadav, Vikas, Maheshwary, Rishabh, Clotan, Paul-Ioan, Madhusudhan, Sathwik Tejaswi, and Surdeanu, Mihai
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning ,I.2.7 ,I.2.0 - Abstract
We present a simple meta quantization approach that quantizes different layers of a large language model (LLM) at different bit levels, and is independent of the underlying quantization technique. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (higher is better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (smaller is better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Adding layer importance to inherently dynamic quantization techniques can further improve their performance, showing that our approach is complementary to other dynamic quantization methods; (c) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (d) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. Our code is publicly available at https://github.com/RazvanDu/LayerwiseQuant/.
- Published
- 2024
17. Explicit Diversity Conditions for Effective Question Answer Generation with Large Language Models
- Author
-
Yadav, Vikas, Kwon, Hyuk Joon, Srinivasan, Vijay, and Jin, Hongxia
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Question Answer Generation (QAG) is an effective data augmentation technique to improve the accuracy of question answering systems, especially in low-resource domains. While recent pretrained and large language model-based QAG methods have made substantial progress, they face the critical issue of redundant QA pair generation, affecting downstream QA systems. Implicit diversity techniques such as sampling and diverse beam search are proven effective solutions but often yield smaller diversity. We present explicit diversity conditions for QAG, focusing on spatial aspects, question types, and entities, substantially increasing diversity in QA generation. Our work emphasizes the need of explicit diversity conditions for generating diverse question-answer synthetic data by showing significant improvements in downstream QA task over existing widely adopted implicit diversity techniques. In particular, generated QA pairs from explicit diversity conditions when used to train the downstream QA model results in an average 4.1% exact match and 4.5% F1 improvement over QAG from implicit sampling techniques on SQuADDU. Our work emphasizes the need for explicit diversity conditions even more in low-resource datasets (SubjQA), where average downstream QA performance improvements are around 12% EM., Comment: Published at COLING 2024
- Published
- 2024
18. Paraphrase and Aggregate with Large Language Models for Minimizing Intent Classification Errors
- Author
-
Yadav, Vikas, Tang, Zheng, and Srinivasan, Vijay
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Large language models (LLM) have achieved remarkable success in natural language generation but lesser focus has been given to their applicability in decision making tasks such as classification. We show that LLMs like LLaMa can achieve high performance on large multi-class classification tasks but still make classification errors and worse, generate out-of-vocabulary class labels. To address these critical issues, we introduce Paraphrase and AGgregate (PAG)-LLM approach wherein an LLM generates multiple paraphrases of the input query (parallel queries), performs multi-class classification for the original query and each paraphrase, and at the end aggregate all the classification labels based on their confidence scores. We evaluate PAG-LLM on two large multi-class classication datasets: CLINC, and Banking and show 22.7% and 15.1% error reduction. We show that PAG-LLM is especially effective for hard examples where LLM is uncertain, and reduces the critical misclassification and hallucinated label generation errors, Comment: Accepted at SIGIR 2024
- Published
- 2024
19. M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
- Author
-
Maheshwary, Rishabh, Yadav, Vikas, Nguyen, Hoang, Mahajan, Khyati, and Madhusudhan, Sathwik Tejaswi
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. While many effective IFT datasets have been introduced recently, they predominantly focus on high-resource languages like English. To better align LLMs across a broad spectrum of languages and tasks, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual. It is constructed by first selecting a diverse set of seed examples and then utilizing the proposed Evol taxonomy to convert these seeds into complex and challenging multi-turn instructions. We demonstrate the effectiveness of M2Lingual by training LLMs of varying sizes and showcasing the enhanced performance across a diverse set of languages. We contribute the 2 step Evol taxonomy with the guided generation code: https://github.com/ServiceNow/M2Lingual, as well as the first fully synthetic, general and task-oriented, multi-turn, multilingual dataset built with Evol - M2Lingual: https://huggingface.co/datasets/ServiceNow-AI/ M2Lingual - containing 182K total IFT pairs, covering 70 languages and 17+ NLP tasks., Comment: 39 pages
- Published
- 2024
20. Short-term S100A8/A9 Blockade Promotes Cardiac Neovascularization after Myocardial Infarction
- Author
-
Mares, Razvan Gheorghita, Suica, Viorel Iulian, Uyy, Elena, Boteanu, Raluca Maria, Ivan, Luminita, Cocuz, Iuliu Gabriel, Sabau, Adrian Horatiu, Yadav, Vikas, Szabo, Istvan Adorjan, Cotoi, Ovidiu Simion, Tomut, Mihaela Elena, Jakobsson, Gabriel, Simionescu, Maya, Antohe, Felicia, and Schiopu, Alexandru
- Published
- 2024
- Full Text
- View/download PDF
21. Advanced Bivariate Geostatistical Modeling for High-Resolution Landslide Susceptibility Zonation for Effective Risk Management in the Northwestern Himalaya, India
- Author
-
Khan, Imran, Yadav, Vikas, Kainthola, Ashutosh, Bahuguna, Harish, Kanungo, D. P., Dahal, Ranjan Kumar, Sarkar, Shantanu, and Asgher, Md. Sarfaraz
- Published
- 2024
- Full Text
- View/download PDF
22. Curry-DPO: Enhancing Alignment using Curriculum Learning & Ranked Preferences
- Author
-
Pattnaik, Pulkit, Maheshwary, Rishabh, Ogueji, Kelechi, Yadav, Vikas, and Madhusudhan, Sathwik Tejaswi
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Direct Preference Optimization (DPO) is an effective technique that leverages pairwise preference data (usually one chosen and rejected response pair per user prompt) to align LLMs to human preferences. In practice, multiple responses can exist for a given prompt with varying quality relative to each other. With availability of such quality ratings for multiple responses, we propose utilizing these responses to create multiple preference pairs for a given prompt. Our work focuses on systematically using the constructed multiple preference pair in DPO training via curriculum learning methodology. In particular, we order these multiple pairs of preference data from easy to hard (emulating curriculum training) according to various criteria. We show detailed comparisons of our proposed approach to the standard single-pair DPO setting. Our method, which we call Curry-DPO consistently shows increased performance gains on MTbench, Vicuna, WizardLM, and the UltraFeedback test set, highlighting its effectiveness. More specifically, Curry-DPO achieves a score of 7.43 on MT-bench with Zephy-7B model outperforming majority of existing LLMs with similar parameter size. Curry-DPO also achieves the highest adjusted win rates on Vicuna, WizardLM, and UltraFeedback test datasets (90.7%, 87.1%, and 87.9% respectively) in our experiments, with notable gains of upto 7.5% when compared to standard DPO technique. We release the preference pairs used in alignment at: https://huggingface.co/datasets/ServiceNow-AI/Curriculum_DPO_preferences, Comment: Published at EMNLP 2024 as long (findings) conference paper
- Published
- 2024
23. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
- Author
-
Gemini Team, Georgiev, Petko, Lei, Ving Ian, Burnell, Ryan, Bai, Libin, Gulati, Anmol, Tanzer, Garrett, Vincent, Damien, Pan, Zhufeng, Wang, Shibo, Mariooryad, Soroosh, Ding, Yifan, Geng, Xinyang, Alcober, Fred, Frostig, Roy, Omernick, Mark, Walker, Lexi, Paduraru, Cosmin, Sorokin, Christina, Tacchetti, Andrea, Gaffney, Colin, Daruki, Samira, Sercinoglu, Olcan, Gleicher, Zach, Love, Juliette, Voigtlaender, Paul, Jain, Rohan, Surita, Gabriela, Mohamed, Kareem, Blevins, Rory, Ahn, Junwhan, Zhu, Tao, Kawintiranon, Kornraphop, Firat, Orhan, Gu, Yiming, Zhang, Yujing, Rahtz, Matthew, Faruqui, Manaal, Clay, Natalie, Gilmer, Justin, Co-Reyes, JD, Penchev, Ivo, Zhu, Rui, Morioka, Nobuyuki, Hui, Kevin, Haridasan, Krishna, Campos, Victor, Mahdieh, Mahdis, Guo, Mandy, Hassan, Samer, Kilgour, Kevin, Vezer, Arpi, Cheng, Heng-Tze, de Liedekerke, Raoul, Goyal, Siddharth, Barham, Paul, Strouse, DJ, Noury, Seb, Adler, Jonas, Sundararajan, Mukund, Vikram, Sharad, Lepikhin, Dmitry, Paganini, Michela, Garcia, Xavier, Yang, Fan, Valter, Dasha, Trebacz, Maja, Vodrahalli, Kiran, Asawaroengchai, Chulayuth, Ring, Roman, Kalb, Norbert, Soares, Livio Baldini, Brahma, Siddhartha, Steiner, David, Yu, Tianhe, Mentzer, Fabian, He, Antoine, Gonzalez, Lucas, Xu, Bibo, Kaufman, Raphael Lopez, Shafey, Laurent El, Oh, Junhyuk, Hennigan, Tom, Driessche, George van den, Odoom, Seth, Lucic, Mario, Roelofs, Becca, Lall, Sid, Marathe, Amit, Chan, Betty, Ontanon, Santiago, He, Luheng, Teplyashin, Denis, Lai, Jonathan, Crone, Phil, Damoc, Bogdan, Ho, Lewis, Riedel, Sebastian, Lenc, Karel, Yeh, Chih-Kuan, Chowdhery, Aakanksha, Xu, Yang, Kazemi, Mehran, Amid, Ehsan, Petrushkina, Anastasia, Swersky, Kevin, Khodaei, Ali, Chen, Gowoon, Larkin, Chris, Pinto, Mario, Yan, Geng, Badia, Adria Puigdomenech, Patil, Piyush, Hansen, Steven, Orr, Dave, Arnold, Sebastien M. R., Grimstad, Jordan, Dai, Andrew, Douglas, Sholto, Sinha, Rishika, Yadav, Vikas, Chen, Xi, Gribovskaya, Elena, Austin, Jacob, Zhao, Jeffrey, Patel, Kaushal, Komarek, Paul, Austin, Sophia, Borgeaud, Sebastian, Friso, Linda, Goyal, Abhimanyu, Caine, Ben, Cao, Kris, Chung, Da-Woon, Lamm, Matthew, Barth-Maron, Gabe, Kagohara, Thais, Olszewska, Kate, Chen, Mia, Shivakumar, Kaushik, Agarwal, Rishabh, Godhia, Harshal, Rajwar, Ravi, Snaider, Javier, Dotiwalla, Xerxes, Liu, Yuan, Barua, Aditya, Ungureanu, Victor, Zhang, Yuan, Batsaikhan, Bat-Orgil, Wirth, Mateo, Qin, James, Danihelka, Ivo, Doshi, Tulsee, Chadwick, Martin, Chen, Jilin, Jain, Sanil, Le, Quoc, Kar, Arjun, Gurumurthy, Madhu, Li, Cheng, Sang, Ruoxin, Liu, Fangyu, Lamprou, Lampros, Munoz, Rich, Lintz, Nathan, Mehta, Harsh, Howard, Heidi, Reynolds, Malcolm, Aroyo, Lora, Wang, Quan, Blanco, Lorenzo, Cassirer, Albin, Griffith, Jordan, Das, Dipanjan, Lee, Stephan, Sygnowski, Jakub, Fisher, Zach, Besley, James, Powell, Richard, Ahmed, Zafarali, Paulus, Dominik, Reitter, David, Borsos, Zalan, Joshi, Rishabh, Pope, Aedan, Hand, Steven, Selo, Vittorio, Jain, Vihan, Sethi, Nikhil, Goel, Megha, Makino, Takaki, May, Rhys, Yang, Zhen, Schalkwyk, Johan, Butterfield, Christina, Hauth, Anja, Goldin, Alex, Hawkins, Will, Senter, Evan, Brin, Sergey, Woodman, Oliver, Ritter, Marvin, Noland, Eric, Giang, Minh, Bolina, Vijay, Lee, Lisa, Blyth, Tim, Mackinnon, Ian, Reid, Machel, Sarvana, Obaid, Silver, David, Chen, Alexander, Wang, Lily, Maggiore, Loren, Chang, Oscar, Attaluri, Nithya, Thornton, Gregory, Chiu, Chung-Cheng, Bunyan, Oskar, Levine, Nir, Chung, Timothy, Eltyshev, Evgenii, Si, Xiance, Lillicrap, Timothy, Brady, Demetra, Aggarwal, Vaibhav, Wu, Boxi, Xu, Yuanzhong, McIlroy, Ross, Badola, Kartikeya, Sandhu, Paramjit, Moreira, Erica, Stokowiec, Wojciech, Hemsley, Ross, Li, Dong, Tudor, Alex, Shyam, Pranav, Rahimtoroghi, Elahe, Haykal, Salem, Sprechmann, Pablo, Zhou, Xiang, Mincu, Diana, Li, Yujia, Addanki, Ravi, Krishna, Kalpesh, Wu, Xiao, Frechette, Alexandre, Eyal, Matan, Dafoe, Allan, Lacey, Dave, Whang, Jay, Avrahami, Thi, Zhang, Ye, Taropa, Emanuel, Lin, Hanzhao, Toyama, Daniel, Rutherford, Eliza, Sano, Motoki, Choe, HyunJeong, Tomala, Alex, Safranek-Shrader, Chalence, Kassner, Nora, Pajarskas, Mantas, Harvey, Matt, Sechrist, Sean, Fortunato, Meire, Lyu, Christina, Elsayed, Gamaleldin, Kuang, Chenkai, Lottes, James, Chu, Eric, Jia, Chao, Chen, Chih-Wei, Humphreys, Peter, Baumli, Kate, Tao, Connie, Samuel, Rajkumar, Santos, Cicero Nogueira dos, Andreassen, Anders, Rakićević, Nemanja, Grewe, Dominik, Kumar, Aviral, Winkler, Stephanie, Caton, Jonathan, Brock, Andrew, Dalmia, Sid, Sheahan, Hannah, Barr, Iain, Miao, Yingjie, Natsev, Paul, Devlin, Jacob, Behbahani, Feryal, Prost, Flavien, Sun, Yanhua, Myaskovsky, Artiom, Pillai, Thanumalayan Sankaranarayana, Hurt, Dan, Lazaridou, Angeliki, Xiong, Xi, Zheng, Ce, Pardo, Fabio, Li, Xiaowei, Horgan, Dan, Stanton, Joe, Ambar, Moran, Xia, Fei, Lince, Alejandro, Wang, Mingqiu, Mustafa, Basil, Webson, Albert, Lee, Hyo, Anil, Rohan, Wicke, Martin, Dozat, Timothy, Sinha, Abhishek, Piqueras, Enrique, Dabir, Elahe, Upadhyay, Shyam, Boral, Anudhyan, Hendricks, Lisa Anne, Fry, Corey, Djolonga, Josip, Su, Yi, Walker, Jake, Labanowski, Jane, Huang, Ronny, Misra, Vedant, Chen, Jeremy, Skerry-Ryan, RJ, Singh, Avi, Rijhwani, Shruti, Yu, Dian, Castro-Ros, Alex, Changpinyo, Beer, Datta, Romina, Bagri, Sumit, Hrafnkelsson, Arnar Mar, Maggioni, Marcello, Zheng, Daniel, Sulsky, Yury, Hou, Shaobo, Paine, Tom Le, Yang, Antoine, Riesa, Jason, Rogozinska, Dominika, Marcus, Dror, Badawy, Dalia El, Zhang, Qiao, Wang, Luyu, Miller, Helen, Greer, Jeremy, Sjos, Lars Lowe, Nova, Azade, Zen, Heiga, Chaabouni, Rahma, Rosca, Mihaela, Jiang, Jiepu, Chen, Charlie, Liu, Ruibo, Sainath, Tara, Krikun, Maxim, Polozov, Alex, Lespiau, Jean-Baptiste, Newlan, Josh, Cankara, Zeyncep, Kwak, Soo, Xu, Yunhan, Chen, Phil, Coenen, Andy, Meyer, Clemens, Tsihlas, Katerina, Ma, Ada, Gottweis, Juraj, Xing, Jinwei, Gu, Chenjie, Miao, Jin, Frank, Christian, Cankara, Zeynep, Ganapathy, Sanjay, Dasgupta, Ishita, Hughes-Fitt, Steph, Chen, Heng, Reid, David, Rong, Keran, Fan, Hongmin, van Amersfoort, Joost, Zhuang, Vincent, Cohen, Aaron, Gu, Shixiang Shane, Mohananey, Anhad, Ilic, Anastasija, Tobin, Taylor, Wieting, John, Bortsova, Anna, Thacker, Phoebe, Wang, Emma, Caveness, Emily, Chiu, Justin, Sezener, Eren, Kaskasoli, Alex, Baker, Steven, Millican, Katie, Elhawaty, Mohamed, Aisopos, Kostas, Lebsack, Carl, Byrd, Nathan, Dai, Hanjun, Jia, Wenhao, Wiethoff, Matthew, Davoodi, Elnaz, Weston, Albert, Yagati, Lakshman, Ahuja, Arun, Gao, Isabel, Pundak, Golan, Zhang, Susan, Azzam, Michael, Sim, Khe Chai, Caelles, Sergi, Keeling, James, Sharma, Abhanshu, Swing, Andy, Li, YaGuang, Liu, Chenxi, Bostock, Carrie Grimes, Bansal, Yamini, Nado, Zachary, Anand, Ankesh, Lipschultz, Josh, Karmarkar, Abhijit, Proleev, Lev, Ittycheriah, Abe, Yeganeh, Soheil Hassas, Polovets, George, Faust, Aleksandra, Sun, Jiao, Rrustemi, Alban, Li, Pen, Shivanna, Rakesh, Liu, Jeremiah, Welty, Chris, Lebron, Federico, Baddepudi, Anirudh, Krause, Sebastian, Parisotto, Emilio, Soricut, Radu, Xu, Zheng, Bloxwich, Dawn, Johnson, Melvin, Neyshabur, Behnam, Mao-Jones, Justin, Wang, Renshen, Ramasesh, Vinay, Abbas, Zaheer, Guez, Arthur, Segal, Constant, Nguyen, Duc Dung, Svensson, James, Hou, Le, York, Sarah, Milan, Kieran, Bridgers, Sophie, Gworek, Wiktor, Tagliasacchi, Marco, Lee-Thorp, James, Chang, Michael, Guseynov, Alexey, Hartman, Ale Jakse, Kwong, Michael, Zhao, Ruizhe, Kashem, Sheleem, Cole, Elizabeth, Miech, Antoine, Tanburn, Richard, Phuong, Mary, Pavetic, Filip, Cevey, Sebastien, Comanescu, Ramona, Ives, Richard, Yang, Sherry, Du, Cosmo, Li, Bo, Zhang, Zizhao, Iinuma, Mariko, Hu, Clara Huiyi, Roy, Aurko, Bijwadia, Shaan, Zhu, Zhenkai, Martins, Danilo, Saputro, Rachel, Gergely, Anita, Zheng, Steven, Jia, Dawei, Antonoglou, Ioannis, Sadovsky, Adam, Gu, Shane, Bi, Yingying, Andreev, Alek, Samangooei, Sina, Khan, Mina, Kocisky, Tomas, Filos, Angelos, Kumar, Chintu, Bishop, Colton, Yu, Adams, Hodkinson, Sarah, Mittal, Sid, Shah, Premal, Moufarek, Alexandre, Cheng, Yong, Bloniarz, Adam, Lee, Jaehoon, Pejman, Pedram, Michel, Paul, Spencer, Stephen, Feinberg, Vladimir, Xiong, Xuehan, Savinov, Nikolay, Smith, Charlotte, Shakeri, Siamak, Tran, Dustin, Chesus, Mary, Bohnet, Bernd, Tucker, George, von Glehn, Tamara, Muir, Carrie, Mao, Yiran, Kazawa, Hideto, Slone, Ambrose, Soparkar, Kedar, Shrivastava, Disha, Cobon-Kerr, James, Sharman, Michael, Pavagadhi, Jay, Araya, Carlos, Misiunas, Karolis, Ghelani, Nimesh, Laskin, Michael, Barker, David, Li, Qiujia, Briukhov, Anton, Houlsby, Neil, Glaese, Mia, Lakshminarayanan, Balaji, Schucher, Nathan, Tang, Yunhao, Collins, Eli, Lim, Hyeontaek, Feng, Fangxiaoyu, Recasens, Adria, Lai, Guangda, Magni, Alberto, De Cao, Nicola, Siddhant, Aditya, Ashwood, Zoe, Orbay, Jordi, Dehghani, Mostafa, Brennan, Jenny, He, Yifan, Xu, Kelvin, Gao, Yang, Saroufim, Carl, Molloy, James, Wu, Xinyi, Arnold, Seb, Chang, Solomon, Schrittwieser, Julian, Buchatskaya, Elena, Radpour, Soroush, Polacek, Martin, Giordano, Skye, Bapna, Ankur, Tokumine, Simon, Hellendoorn, Vincent, Sottiaux, Thibault, Cogan, Sarah, Severyn, Aliaksei, Saleh, Mohammad, Thakoor, Shantanu, Shefey, Laurent, Qiao, Siyuan, Gaba, Meenu, Chang, Shuo-yiin, Swanson, Craig, Zhang, Biao, Lee, Benjamin, Rubenstein, Paul Kishan, Song, Gan, Kwiatkowski, Tom, Koop, Anna, Kannan, Ajay, Kao, David, Schuh, Parker, Stjerngren, Axel, Ghiasi, Golnaz, Gibson, Gena, Vilnis, Luke, Yuan, Ye, Ferreira, Felipe Tiengo, Kamath, Aishwarya, Klimenko, Ted, Franko, Ken, Xiao, Kefan, Bhattacharya, Indro, Patel, Miteyan, Wang, Rui, Morris, Alex, Strudel, Robin, Sharma, Vivek, Choy, Peter, Hashemi, Sayed Hadi, Landon, Jessica, Finkelstein, Mara, Jhakra, Priya, Frye, Justin, Barnes, Megan, Mauger, Matthew, Daun, Dennis, Baatarsukh, Khuslen, Tung, Matthew, Farhan, Wael, Michalewski, Henryk, Viola, Fabio, Quitry, Felix de Chaumont, Lan, Charline Le, Hudson, Tom, Wang, Qingze, Fischer, Felix, Zheng, Ivy, White, Elspeth, Dragan, Anca, Alayrac, Jean-baptiste, Ni, Eric, Pritzel, Alexander, Iwanicki, Adam, Isard, Michael, Bulanova, Anna, Zilka, Lukas, Dyer, Ethan, Sachan, Devendra, Srinivasan, Srivatsan, Muckenhirn, Hannah, Cai, Honglong, Mandhane, Amol, Tariq, Mukarram, Rae, Jack W., Wang, Gary, Ayoub, Kareem, FitzGerald, Nicholas, Zhao, Yao, Han, Woohyun, Alberti, Chris, Garrette, Dan, Krishnakumar, Kashyap, Gimenez, Mai, Levskaya, Anselm, Sohn, Daniel, Matak, Josip, Iturrate, Inaki, Chang, Michael B., Xiang, Jackie, Cao, Yuan, Ranka, Nishant, Brown, Geoff, Hutter, Adrian, Mirrokni, Vahab, Chen, Nanxin, Yao, Kaisheng, Egyed, Zoltan, Galilee, Francois, Liechty, Tyler, Kallakuri, Praveen, Palmer, Evan, Ghemawat, Sanjay, Liu, Jasmine, Tao, David, Thornton, Chloe, Green, Tim, Jasarevic, Mimi, Lin, Sharon, Cotruta, Victor, Tan, Yi-Xuan, Fiedel, Noah, Yu, Hongkun, Chi, Ed, Neitz, Alexander, Heitkaemper, Jens, Sinha, Anu, Zhou, Denny, Sun, Yi, Kaed, Charbel, Hulse, Brice, Mishra, Swaroop, Georgaki, Maria, Kudugunta, Sneha, Farabet, Clement, Shafran, Izhak, Vlasic, Daniel, Tsitsulin, Anton, Ananthanarayanan, Rajagopal, Carin, Alen, Su, Guolong, Sun, Pei, V, Shashank, Carvajal, Gabriel, Broder, Josef, Comsa, Iulia, Repina, Alena, Wong, William, Chen, Warren Weilun, Hawkins, Peter, Filonov, Egor, Loher, Lucia, Hirnschall, Christoph, Wang, Weiyi, Ye, Jingchen, Burns, Andrea, Cate, Hardie, Wright, Diana Gage, Piccinini, Federico, Zhang, Lei, Lin, Chu-Cheng, Gog, Ionel, Kulizhskaya, Yana, Sreevatsa, Ashwin, Song, Shuang, Cobo, Luis C., Iyer, Anand, Tekur, Chetan, Garrido, Guillermo, Xiao, Zhuyun, Kemp, Rupert, Zheng, Huaixiu Steven, Li, Hui, Agarwal, Ananth, Ngani, Christel, Goshvadi, Kati, Santamaria-Fernandez, Rebeca, Fica, Wojciech, Chen, Xinyun, Gorgolewski, Chris, Sun, Sean, Garg, Roopal, Ye, Xinyu, Eslami, S. M. Ali, Hua, Nan, Simon, Jon, Joshi, Pratik, Kim, Yelin, Tenney, Ian, Potluri, Sahitya, Thiet, Lam Nguyen, Yuan, Quan, Luisier, Florian, Chronopoulou, Alexandra, Scellato, Salvatore, Srinivasan, Praveen, Chen, Minmin, Koverkathu, Vinod, Dalibard, Valentin, Xu, Yaming, Saeta, Brennan, Anderson, Keith, Sellam, Thibault, Fernando, Nick, Huot, Fantine, Jung, Junehyuk, Varadarajan, Mani, Quinn, Michael, Raul, Amit, Le, Maigo, Habalov, Ruslan, Clark, Jon, Jalan, Komal, Bullard, Kalesha, Singhal, Achintya, Luong, Thang, Wang, Boyu, Rajayogam, Sujeevan, Eisenschlos, Julian, Jia, Johnson, Finchelstein, Daniel, Yakubovich, Alex, Balle, Daniel, Fink, Michael, Agarwal, Sameer, Li, Jing, Dvijotham, Dj, Pal, Shalini, Kang, Kai, Konzelmann, Jaclyn, Beattie, Jennifer, Dousse, Olivier, Wu, Diane, Crocker, Remi, Elkind, Chen, Jonnalagadda, Siddhartha Reddy, Lee, Jong, Holtmann-Rice, Dan, Kallarackal, Krystal, Liu, Rosanne, Vnukov, Denis, Vats, Neera, Invernizzi, Luca, Jafari, Mohsen, Zhou, Huanjie, Taylor, Lilly, Prendki, Jennifer, Wu, Marcus, Eccles, Tom, Liu, Tianqi, Kopparapu, Kavya, Beaufays, Francoise, Angermueller, Christof, Marzoca, Andreea, Sarcar, Shourya, Dib, Hilal, Stanway, Jeff, Perbet, Frank, Trdin, Nejc, Sterneck, Rachel, Khorlin, Andrey, Li, Dinghua, Wu, Xihui, Goenka, Sonam, Madras, David, Goldshtein, Sasha, Gierke, Willi, Zhou, Tong, Liu, Yaxin, Liang, Yannie, White, Anais, Li, Yunjie, Singh, Shreya, Bahargam, Sanaz, Epstein, Mark, Basu, Sujoy, Lao, Li, Ozturel, Adnan, Crous, Carl, Zhai, Alex, Lu, Han, Tung, Zora, Gaur, Neeraj, Walton, Alanna, Dixon, Lucas, Zhang, Ming, Globerson, Amir, Uy, Grant, Bolt, Andrew, Wiles, Olivia, Nasr, Milad, Shumailov, Ilia, Selvi, Marco, Piccinno, Francesco, Aguilar, Ricardo, McCarthy, Sara, Khalman, Misha, Shukla, Mrinal, Galic, Vlado, Carpenter, John, Villela, Kevin, Zhang, Haibin, Richardson, Harry, Martens, James, Bosnjak, Matko, Belle, Shreyas Rammohan, Seibert, Jeff, Alnahlawi, Mahmoud, McWilliams, Brian, Singh, Sankalp, Louis, Annie, Ding, Wen, Popovici, Dan, Simicich, Lenin, Knight, Laura, Mehta, Pulkit, Gupta, Nishesh, Shi, Chongyang, Fatehi, Saaber, Mitrovic, Jovana, Grills, Alex, Pagadora, Joseph, Munkhdalai, Tsendsuren, Petrova, Dessie, Eisenbud, Danielle, Zhang, Zhishuai, Yates, Damion, Mittal, Bhavishya, Tripuraneni, Nilesh, Assael, Yannis, Brovelli, Thomas, Jain, Prateek, Velimirovic, Mihajlo, Akbulut, Canfer, Mu, Jiaqi, Macherey, Wolfgang, Kumar, Ravin, Xu, Jun, Qureshi, Haroon, Comanici, Gheorghe, Wiesner, Jeremy, Gong, Zhitao, Ruddock, Anton, Bauer, Matthias, Felt, Nick, GP, Anirudh, Arnab, Anurag, Zelle, Dustin, Rothfuss, Jonas, Rosgen, Bill, Shenoy, Ashish, Seybold, Bryan, Li, Xinjian, Mudigonda, Jayaram, Erdogan, Goker, Xia, Jiawei, Simsa, Jiri, Michi, Andrea, Yao, Yi, Yew, Christopher, Kan, Steven, Caswell, Isaac, Radebaugh, Carey, Elisseeff, Andre, Valenzuela, Pedro, McKinney, Kay, Paterson, Kim, Cui, Albert, Latorre-Chimoto, Eri, Kim, Solomon, Zeng, William, Durden, Ken, Ponnapalli, Priya, Sosea, Tiberiu, Choquette-Choo, Christopher A., Manyika, James, Robenek, Brona, Vashisht, Harsha, Pereira, Sebastien, Lam, Hoi, Velic, Marko, Owusu-Afriyie, Denese, Lee, Katherine, Bolukbasi, Tolga, Parrish, Alicia, Lu, Shawn, Park, Jane, Venkatraman, Balaji, Talbert, Alice, Rosique, Lambert, Cheng, Yuchung, Sozanschi, Andrei, Paszke, Adam, Kumar, Praveen, Austin, Jessica, Li, Lu, Salama, Khalid, Perz, Bartek, Kim, Wooyeol, Dukkipati, Nandita, Baryshnikov, Anthony, Kaplanis, Christos, Sheng, XiangHai, Chervonyi, Yuri, Unlu, Caglar, Casas, Diego de Las, Askham, Harry, Tunyasuvunakool, Kathryn, Gimeno, Felix, Poder, Siim, Kwak, Chester, Miecnikowski, Matt, Dimitriev, Alek, Parisi, Aaron, Liu, Dangyi, Tsai, Tomy, Shevlane, Toby, Kouridi, Christina, Garmon, Drew, Goedeckemeyer, Adrian, Brown, Adam R., Vijayakumar, Anitha, Elqursh, Ali, Jazayeri, Sadegh, Huang, Jin, Carthy, Sara Mc, Hoover, Jay, Kim, Lucy, Kumar, Sandeep, Chen, Wei, Biles, Courtney, Bingham, Garrett, Rosen, Evan, Wang, Lisa, Tan, Qijun, Engel, David, Pongetti, Francesco, de Cesare, Dario, Hwang, Dongseong, Yu, Lily, Pullman, Jennifer, Narayanan, Srini, Levin, Kyle, Gopal, Siddharth, Li, Megan, Aharoni, Asaf, Trinh, Trieu, Lo, Jessica, Casagrande, Norman, Vij, Roopali, Matthey, Loic, Ramadhana, Bramandia, Matthews, Austin, Carey, CJ, Johnson, Matthew, Goranova, Kremena, Shah, Rohin, Ashraf, Shereen, Dasgupta, Kingshuk, Larsen, Rasmus, Wang, Yicheng, Vuyyuru, Manish Reddy, Jiang, Chong, Ijazi, Joana, Osawa, Kazuki, Smith, Celine, Boppana, Ramya Sree, Bilal, Taylan, Koizumi, Yuma, Xu, Ying, Altun, Yasemin, Shabat, Nir, Bariach, Ben, Korchemniy, Alex, Choo, Kiam, Ronneberger, Olaf, Iwuanyanwu, Chimezie, Zhao, Shubin, Soergel, David, Hsieh, Cho-Jui, Cai, Irene, Iqbal, Shariq, Sundermeyer, Martin, Chen, Zhe, Bursztein, Elie, Malaviya, Chaitanya, Biadsy, Fadi, Shroff, Prakash, Dhillon, Inderjit, Latkar, Tejasi, Dyer, Chris, Forbes, Hannah, Nicosia, Massimo, Nikolaev, Vitaly, Greene, Somer, Georgiev, Marin, Wang, Pidong, Martin, Nina, Sedghi, Hanie, Zhang, John, Banzal, Praseem, Fritz, Doug, Rao, Vikram, Wang, Xuezhi, Zhang, Jiageng, Patraucean, Viorica, Du, Dayou, Mordatch, Igor, Jurin, Ivan, Liu, Lewis, Dubey, Ayush, Mohan, Abhi, Nowakowski, Janek, Ion, Vlad-Doru, Wei, Nan, Tojo, Reiko, Raad, Maria Abi, Hudson, Drew A., Keshava, Vaishakh, Agrawal, Shubham, Ramirez, Kevin, Wu, Zhichun, Nguyen, Hoang, Liu, Ji, Sewak, Madhavi, Petrini, Bryce, Choi, DongHyun, Philips, Ivan, Wang, Ziyue, Bica, Ioana, Garg, Ankush, Wilkiewicz, Jarek, Agrawal, Priyanka, Guo, Danhao, Xue, Emily, Shaik, Naseer, Leach, Andrew, Khan, Sadh MNM, Wiesinger, Julia, Jerome, Sammy, Chakladar, Abhishek, Wang, Alek Wenjiao, Ornduff, Tina, Abu, Folake, Ghaffarkhah, Alireza, Wainwright, Marcus, Cortes, Mario, Liu, Frederick, Maynez, Joshua, Terzis, Andreas, Samangouei, Pouya, Mansour, Riham, Kępa, Tomasz, Aubet, François-Xavier, Algymr, Anton, Banica, Dan, Weisz, Agoston, Orban, Andras, Senges, Alexandre, Andrejczuk, Ewa, Geller, Mark, Santo, Niccolo Dal, Anklin, Valentin, Merey, Majd Al, Baeuml, Martin, Strohman, Trevor, Bai, Junwen, Petrov, Slav, Wu, Yonghui, Hassabis, Demis, Kavukcuoglu, Koray, Dean, Jeff, and Vinyals, Oriol
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
- Published
- 2024
24. An epidemiological study of Tinea capitis in patients attending a tertiary care hospital
- Author
-
Yadav, Vikas Chandra, Khan, Mohammad Zoyev, and Agrawal, Sujan Narayan
- Published
- 2016
- Full Text
- View/download PDF
25. 3D Stochastic Simulation of Rockfall Mechanism and Mitigation in the Batseri Zone
- Author
-
Pandey, Vishnu Himanshu Ratnam, Kainthola, Ashutosh, Yadav, Vikas, Kundu, Jagadish, Mazzanti, Paolo, Singh, Ramesh P., and Singh, T. N.
- Published
- 2025
- Full Text
- View/download PDF
26. Mucosal melanoma: A series of seven cases and review of literature
- Author
-
Aashita, Yadav, Vikas, Sharma, Rajiv, Mishra, Hemendra, Choudhury, Apratim R., and Thakur, Pragyat
- Subjects
Care and treatment ,Prognosis ,Health aspects ,Melanocytes -- Health aspects ,Melanoma -- Prognosis -- Care and treatment - Abstract
Author(s): Aashita (corresponding author) [1]; Vikas Yadav [1]; Rajiv Sharma [1]; Hemendra Mishra [1]; Apratim R. Choudhury [2]; Pragyat Thakur [3] BACKGROUND Malignant melanoma is a tumor of melanocytes that [...], Background: Mucosal melanoma (MM) is the uncontrolled proliferation of melanocytes originating from the mucosal surface. MM is rare and comprises 0.3 of all cancers. Methods: We retrospectively analyzed records of 6582 cases who reported to our center from June 1, 2017 to May 31, 2022. Only seven cases of mucosal melanoma were found among them. Results: In this article, we have reported seven cases of mucosal melanoma that presented over a period of 5 years. A comparison of mucosal and cutaneous melanoma has been done. Conclusion: MM is an aggressive tumor with a dismal prognosis. Surgery, chemotherapy, radiation, targeted and immunotherapy are various treatment options; however, prognosis remains less favorable as timely diagnosis is difficult. Keywords: Ano-rectal, melanoma, mucosal melanoma, rectal, sinonasal, vulval
- Published
- 2024
- Full Text
- View/download PDF
27. Gemini: A Family of Highly Capable Multimodal Models
- Author
-
Gemini Team, Anil, Rohan, Borgeaud, Sebastian, Alayrac, Jean-Baptiste, Yu, Jiahui, Soricut, Radu, Schalkwyk, Johan, Dai, Andrew M., Hauth, Anja, Millican, Katie, Silver, David, Johnson, Melvin, Antonoglou, Ioannis, Schrittwieser, Julian, Glaese, Amelia, Chen, Jilin, Pitler, Emily, Lillicrap, Timothy, Lazaridou, Angeliki, Firat, Orhan, Molloy, James, Isard, Michael, Barham, Paul R., Hennigan, Tom, Lee, Benjamin, Viola, Fabio, Reynolds, Malcolm, Xu, Yuanzhong, Doherty, Ryan, Collins, Eli, Meyer, Clemens, Rutherford, Eliza, Moreira, Erica, Ayoub, Kareem, Goel, Megha, Krawczyk, Jack, Du, Cosmo, Chi, Ed, Cheng, Heng-Tze, Ni, Eric, Shah, Purvi, Kane, Patrick, Chan, Betty, Faruqui, Manaal, Severyn, Aliaksei, Lin, Hanzhao, Li, YaGuang, Cheng, Yong, Ittycheriah, Abe, Mahdieh, Mahdis, Chen, Mia, Sun, Pei, Tran, Dustin, Bagri, Sumit, Lakshminarayanan, Balaji, Liu, Jeremiah, Orban, Andras, Güra, Fabian, Zhou, Hao, Song, Xinying, Boffy, Aurelien, Ganapathy, Harish, Zheng, Steven, Choe, HyunJeong, Weisz, Ágoston, Zhu, Tao, Lu, Yifeng, Gopal, Siddharth, Kahn, Jarrod, Kula, Maciej, Pitman, Jeff, Shah, Rushin, Taropa, Emanuel, Merey, Majd Al, Baeuml, Martin, Chen, Zhifeng, Shafey, Laurent El, Zhang, Yujing, Sercinoglu, Olcan, Tucker, George, Piqueras, Enrique, Krikun, Maxim, Barr, Iain, Savinov, Nikolay, Danihelka, Ivo, Roelofs, Becca, White, Anaïs, Andreassen, Anders, von Glehn, Tamara, Yagati, Lakshman, Kazemi, Mehran, Gonzalez, Lucas, Khalman, Misha, Sygnowski, Jakub, Frechette, Alexandre, Smith, Charlotte, Culp, Laura, Proleev, Lev, Luan, Yi, Chen, Xi, Lottes, James, Schucher, Nathan, Lebron, Federico, Rrustemi, Alban, Clay, Natalie, Crone, Phil, Kocisky, Tomas, Zhao, Jeffrey, Perz, Bartek, Yu, Dian, Howard, Heidi, Bloniarz, Adam, Rae, Jack W., Lu, Han, Sifre, Laurent, Maggioni, Marcello, Alcober, Fred, Garrette, Dan, Barnes, Megan, Thakoor, Shantanu, Austin, Jacob, Barth-Maron, Gabriel, Wong, William, Joshi, Rishabh, Chaabouni, Rahma, Fatiha, Deeni, Ahuja, Arun, Tomar, Gaurav Singh, Senter, Evan, Chadwick, Martin, Kornakov, Ilya, Attaluri, Nithya, Iturrate, Iñaki, Liu, Ruibo, Li, Yunxuan, Cogan, Sarah, Chen, Jeremy, Jia, Chao, Gu, Chenjie, Zhang, Qiao, Grimstad, Jordan, Hartman, Ale Jakse, Garcia, Xavier, Pillai, Thanumalayan Sankaranarayana, Devlin, Jacob, Laskin, Michael, Casas, Diego de Las, Valter, Dasha, Tao, Connie, Blanco, Lorenzo, Badia, Adrià Puigdomènech, Reitter, David, Chen, Mianna, Brennan, Jenny, Rivera, Clara, Brin, Sergey, Iqbal, Shariq, Surita, Gabriela, Labanowski, Jane, Rao, Abhi, Winkler, Stephanie, Parisotto, Emilio, Gu, Yiming, Olszewska, Kate, Addanki, Ravi, Miech, Antoine, Louis, Annie, Teplyashin, Denis, Brown, Geoff, Catt, Elliot, Balaguer, Jan, Xiang, Jackie, Wang, Pidong, Ashwood, Zoe, Briukhov, Anton, Webson, Albert, Ganapathy, Sanjay, Sanghavi, Smit, Kannan, Ajay, Chang, Ming-Wei, Stjerngren, Axel, Djolonga, Josip, Sun, Yuting, Bapna, Ankur, Aitchison, Matthew, Pejman, Pedram, Michalewski, Henryk, Yu, Tianhe, Wang, Cindy, Love, Juliette, Ahn, Junwhan, Bloxwich, Dawn, Han, Kehang, Humphreys, Peter, Sellam, Thibault, Bradbury, James, Godbole, Varun, Samangooei, Sina, Damoc, Bogdan, Kaskasoli, Alex, Arnold, Sébastien M. R., Vasudevan, Vijay, Agrawal, Shubham, Riesa, Jason, Lepikhin, Dmitry, Tanburn, Richard, Srinivasan, Srivatsan, Lim, Hyeontaek, Hodkinson, Sarah, Shyam, Pranav, Ferret, Johan, Hand, Steven, Garg, Ankush, Paine, Tom Le, Li, Jian, Li, Yujia, Giang, Minh, Neitz, Alexander, Abbas, Zaheer, York, Sarah, Reid, Machel, Cole, Elizabeth, Chowdhery, Aakanksha, Das, Dipanjan, Rogozińska, Dominika, Nikolaev, Vitaliy, Sprechmann, Pablo, Nado, Zachary, Zilka, Lukas, Prost, Flavien, He, Luheng, Monteiro, Marianne, Mishra, Gaurav, Welty, Chris, Newlan, Josh, Jia, Dawei, Allamanis, Miltiadis, Hu, Clara Huiyi, de Liedekerke, Raoul, Gilmer, Justin, Saroufim, Carl, Rijhwani, Shruti, Hou, Shaobo, Shrivastava, Disha, Baddepudi, Anirudh, Goldin, Alex, Ozturel, Adnan, Cassirer, Albin, Xu, Yunhan, Sohn, Daniel, Sachan, Devendra, Amplayo, Reinald Kim, Swanson, Craig, Petrova, Dessie, Narayan, Shashi, Guez, Arthur, Brahma, Siddhartha, Landon, Jessica, Patel, Miteyan, Zhao, Ruizhe, Villela, Kevin, Wang, Luyu, Jia, Wenhao, Rahtz, Matthew, Giménez, Mai, Yeung, Legg, Keeling, James, Georgiev, Petko, Mincu, Diana, Wu, Boxi, Haykal, Salem, Saputro, Rachel, Vodrahalli, Kiran, Qin, James, Cankara, Zeynep, Sharma, Abhanshu, Fernando, Nick, Hawkins, Will, Neyshabur, Behnam, Kim, Solomon, Hutter, Adrian, Agrawal, Priyanka, Castro-Ros, Alex, Driessche, George van den, Wang, Tao, Yang, Fan, Chang, Shuo-yiin, Komarek, Paul, McIlroy, Ross, Lučić, Mario, Zhang, Guodong, Farhan, Wael, Sharman, Michael, Natsev, Paul, Michel, Paul, Bansal, Yamini, Qiao, Siyuan, Cao, Kris, Shakeri, Siamak, Butterfield, Christina, Chung, Justin, Rubenstein, Paul Kishan, Agrawal, Shivani, Mensch, Arthur, Soparkar, Kedar, Lenc, Karel, Chung, Timothy, Pope, Aedan, Maggiore, Loren, Kay, Jackie, Jhakra, Priya, Wang, Shibo, Maynez, Joshua, Phuong, Mary, Tobin, Taylor, Tacchetti, Andrea, Trebacz, Maja, Robinson, Kevin, Katariya, Yash, Riedel, Sebastian, Bailey, Paige, Xiao, Kefan, Ghelani, Nimesh, Aroyo, Lora, Slone, Ambrose, Houlsby, Neil, Xiong, Xuehan, Yang, Zhen, Gribovskaya, Elena, Adler, Jonas, Wirth, Mateo, Lee, Lisa, Li, Music, Kagohara, Thais, Pavagadhi, Jay, Bridgers, Sophie, Bortsova, Anna, Ghemawat, Sanjay, Ahmed, Zafarali, Liu, Tianqi, Powell, Richard, Bolina, Vijay, Iinuma, Mariko, Zablotskaia, Polina, Besley, James, Chung, Da-Woon, Dozat, Timothy, Comanescu, Ramona, Si, Xiance, Greer, Jeremy, Su, Guolong, Polacek, Martin, Kaufman, Raphaël Lopez, Tokumine, Simon, Hu, Hexiang, Buchatskaya, Elena, Miao, Yingjie, Elhawaty, Mohamed, Siddhant, Aditya, Tomasev, Nenad, Xing, Jinwei, Greer, Christina, Miller, Helen, Ashraf, Shereen, Roy, Aurko, Zhang, Zizhao, Ma, Ada, Filos, Angelos, Besta, Milos, Blevins, Rory, Klimenko, Ted, Yeh, Chih-Kuan, Changpinyo, Soravit, Mu, Jiaqi, Chang, Oscar, Pajarskas, Mantas, Muir, Carrie, Cohen, Vered, Lan, Charline Le, Haridasan, Krishna, Marathe, Amit, Hansen, Steven, Douglas, Sholto, Samuel, Rajkumar, Wang, Mingqiu, Austin, Sophia, Lan, Chang, Jiang, Jiepu, Chiu, Justin, Lorenzo, Jaime Alonso, Sjösund, Lars Lowe, Cevey, Sébastien, Gleicher, Zach, Avrahami, Thi, Boral, Anudhyan, Srinivasan, Hansa, Selo, Vittorio, May, Rhys, Aisopos, Konstantinos, Hussenot, Léonard, Soares, Livio Baldini, Baumli, Kate, Chang, Michael B., Recasens, Adrià, Caine, Ben, Pritzel, Alexander, Pavetic, Filip, Pardo, Fabio, Gergely, Anita, Frye, Justin, Ramasesh, Vinay, Horgan, Dan, Badola, Kartikeya, Kassner, Nora, Roy, Subhrajit, Dyer, Ethan, Campos, Víctor Campos, Tomala, Alex, Tang, Yunhao, Badawy, Dalia El, White, Elspeth, Mustafa, Basil, Lang, Oran, Jindal, Abhishek, Vikram, Sharad, Gong, Zhitao, Caelles, Sergi, Hemsley, Ross, Thornton, Gregory, Feng, Fangxiaoyu, Stokowiec, Wojciech, Zheng, Ce, Thacker, Phoebe, Ünlü, Çağlar, Zhang, Zhishuai, Saleh, Mohammad, Svensson, James, Bileschi, Max, Patil, Piyush, Anand, Ankesh, Ring, Roman, Tsihlas, Katerina, Vezer, Arpi, Selvi, Marco, Shevlane, Toby, Rodriguez, Mikel, Kwiatkowski, Tom, Daruki, Samira, Rong, Keran, Dafoe, Allan, FitzGerald, Nicholas, Gu-Lemberg, Keren, Khan, Mina, Hendricks, Lisa Anne, Pellat, Marie, Feinberg, Vladimir, Cobon-Kerr, James, Sainath, Tara, Rauh, Maribeth, Hashemi, Sayed Hadi, Ives, Richard, Hasson, Yana, Noland, Eric, Cao, Yuan, Byrd, Nathan, Hou, Le, Wang, Qingze, Sottiaux, Thibault, Paganini, Michela, Lespiau, Jean-Baptiste, Moufarek, Alexandre, Hassan, Samer, Shivakumar, Kaushik, van Amersfoort, Joost, Mandhane, Amol, Joshi, Pratik, Goyal, Anirudh, Tung, Matthew, Brock, Andrew, Sheahan, Hannah, Misra, Vedant, Li, Cheng, Rakićević, Nemanja, Dehghani, Mostafa, Liu, Fangyu, Mittal, Sid, Oh, Junhyuk, Noury, Seb, Sezener, Eren, Huot, Fantine, Lamm, Matthew, De Cao, Nicola, Chen, Charlie, Mudgal, Sidharth, Stella, Romina, Brooks, Kevin, Vasudevan, Gautam, Liu, Chenxi, Chain, Mainak, Melinkeri, Nivedita, Cohen, Aaron, Wang, Venus, Seymore, Kristie, Zubkov, Sergey, Goel, Rahul, Yue, Summer, Krishnakumaran, Sai, Albert, Brian, Hurley, Nate, Sano, Motoki, Mohananey, Anhad, Joughin, Jonah, Filonov, Egor, Kępa, Tomasz, Eldawy, Yomna, Lim, Jiawern, Rishi, Rahul, Badiezadegan, Shirin, Bos, Taylor, Chang, Jerry, Jain, Sanil, Padmanabhan, Sri Gayatri Sundara, Puttagunta, Subha, Krishna, Kalpesh, Baker, Leslie, Kalb, Norbert, Bedapudi, Vamsi, Kurzrok, Adam, Lei, Shuntong, Yu, Anthony, Litvin, Oren, Zhou, Xiang, Wu, Zhichun, Sobell, Sam, Siciliano, Andrea, Papir, Alan, Neale, Robby, Bragagnolo, Jonas, Toor, Tej, Chen, Tina, Anklin, Valentin, Wang, Feiran, Feng, Richie, Gholami, Milad, Ling, Kevin, Liu, Lijuan, Walter, Jules, Moghaddam, Hamid, Kishore, Arun, Adamek, Jakub, Mercado, Tyler, Mallinson, Jonathan, Wandekar, Siddhinita, Cagle, Stephen, Ofek, Eran, Garrido, Guillermo, Lombriser, Clemens, Mukha, Maksim, Sun, Botu, Mohammad, Hafeezul Rahman, Matak, Josip, Qian, Yadi, Peswani, Vikas, Janus, Pawel, Yuan, Quan, Schelin, Leif, David, Oana, Garg, Ankur, He, Yifan, Duzhyi, Oleksii, Älgmyr, Anton, Lottaz, Timothée, Li, Qi, Yadav, Vikas, Xu, Luyao, Chinien, Alex, Shivanna, Rakesh, Chuklin, Aleksandr, Li, Josie, Spadine, Carrie, Wolfe, Travis, Mohamed, Kareem, Das, Subhabrata, Dai, Zihang, He, Kyle, von Dincklage, Daniel, Upadhyay, Shyam, Maurya, Akanksha, Chi, Luyan, Krause, Sebastian, Salama, Khalid, Rabinovitch, Pam G, M, Pavan Kumar Reddy, Selvan, Aarush, Dektiarev, Mikhail, Ghiasi, Golnaz, Guven, Erdem, Gupta, Himanshu, Liu, Boyi, Sharma, Deepak, Shtacher, Idan Heimlich, Paul, Shachi, Akerlund, Oscar, Aubet, François-Xavier, Huang, Terry, Zhu, Chen, Zhu, Eric, Teixeira, Elico, Fritze, Matthew, Bertolini, Francesco, Marinescu, Liana-Eleonora, Bölle, Martin, Paulus, Dominik, Gupta, Khyatti, Latkar, Tejasi, Chang, Max, Sanders, Jason, Wilson, Roopa, Wu, Xuewei, Tan, Yi-Xuan, Thiet, Lam Nguyen, Doshi, Tulsee, Lall, Sid, Mishra, Swaroop, Chen, Wanming, Luong, Thang, Benjamin, Seth, Lee, Jasmine, Andrejczuk, Ewa, Rabiej, Dominik, Ranjan, Vipul, Styrc, Krzysztof, Yin, Pengcheng, Simon, Jon, Harriott, Malcolm Rose, Bansal, Mudit, Robsky, Alexei, Bacon, Geoff, Greene, David, Mirylenka, Daniil, Zhou, Chen, Sarvana, Obaid, Goyal, Abhimanyu, Andermatt, Samuel, Siegler, Patrick, Horn, Ben, Israel, Assaf, Pongetti, Francesco, Chen, Chih-Wei "Louis", Selvatici, Marco, Silva, Pedro, Wang, Kathie, Tolins, Jackson, Guu, Kelvin, Yogev, Roey, Cai, Xiaochen, Agostini, Alessandro, Shah, Maulik, Nguyen, Hung, Donnaile, Noah Ó, Pereira, Sébastien, Friso, Linda, Stambler, Adam, Kuang, Chenkai, Romanikhin, Yan, Geller, Mark, Yan, ZJ, Jang, Kane, Lee, Cheng-Chun, Fica, Wojciech, Malmi, Eric, Tan, Qijun, Banica, Dan, Balle, Daniel, Pham, Ryan, Huang, Yanping, Avram, Diana, Shi, Hongzhi, Singh, Jasjot, Hidey, Chris, Ahuja, Niharika, Saxena, Pranab, Dooley, Dan, Potharaju, Srividya Pranavi, O'Neill, Eileen, Gokulchandran, Anand, Foley, Ryan, Zhao, Kai, Dusenberry, Mike, Liu, Yuan, Mehta, Pulkit, Kotikalapudi, Ragha, Safranek-Shrader, Chalence, Goodman, Andrew, Kessinger, Joshua, Globen, Eran, Kolhar, Prateek, Gorgolewski, Chris, Ibrahim, Ali, Song, Yang, Eichenbaum, Ali, Brovelli, Thomas, Potluri, Sahitya, Lahoti, Preethi, Baetu, Cip, Ghorbani, Ali, Chen, Charles, Crawford, Andy, Pal, Shalini, Sridhar, Mukund, Gurita, Petru, Mujika, Asier, Petrovski, Igor, Cedoz, Pierre-Louis, Li, Chenmei, Chen, Shiyuan, Santo, Niccolò Dal, Goyal, Siddharth, Punjabi, Jitesh, Kappaganthu, Karthik, Kwak, Chester, LV, Pallavi, Velury, Sarmishta, Choudhury, Himadri, Hall, Jamie, Shah, Premal, Figueira, Ricardo, Thomas, Matt, Lu, Minjie, Zhou, Ting, Kumar, Chintu, Jurdi, Thomas, Chikkerur, Sharat, Ma, Yenai, Yu, Adams, Kwak, Soo, Ähdel, Victor, Rajayogam, Sujeevan, Choma, Travis, Liu, Fei, Barua, Aditya, Ji, Colin, Park, Ji Ho, Hellendoorn, Vincent, Bailey, Alex, Bilal, Taylan, Zhou, Huanjie, Khatir, Mehrdad, Sutton, Charles, Rzadkowski, Wojciech, Macintosh, Fiona, Shagin, Konstantin, Medina, Paul, Liang, Chen, Zhou, Jinjing, Shah, Pararth, Bi, Yingying, Dankovics, Attila, Banga, Shipra, Lehmann, Sabine, Bredesen, Marissa, Lin, Zifan, Hoffmann, John Eric, Lai, Jonathan, Chung, Raynald, Yang, Kai, Balani, Nihal, Bražinskas, Arthur, Sozanschi, Andrei, Hayes, Matthew, Alcalde, Héctor Fernández, Makarov, Peter, Chen, Will, Stella, Antonio, Snijders, Liselotte, Mandl, Michael, Kärrman, Ante, Nowak, Paweł, Wu, Xinyi, Dyck, Alex, Vaidyanathan, Krishnan, R, Raghavender, Mallet, Jessica, Rudominer, Mitch, Johnston, Eric, Mittal, Sushil, Udathu, Akhil, Christensen, Janara, Verma, Vishal, Irving, Zach, Santucci, Andreas, Elsayed, Gamaleldin, Davoodi, Elnaz, Georgiev, Marin, Tenney, Ian, Hua, Nan, Cideron, Geoffrey, Leurent, Edouard, Alnahlawi, Mahmoud, Georgescu, Ionut, Wei, Nan, Zheng, Ivy, Scandinaro, Dylan, Jiang, Heinrich, Snoek, Jasper, Sundararajan, Mukund, Wang, Xuezhi, Ontiveros, Zack, Karo, Itay, Cole, Jeremy, Rajashekhar, Vinu, Tumeh, Lara, Ben-David, Eyal, Jain, Rishub, Uesato, Jonathan, Datta, Romina, Bunyan, Oskar, Wu, Shimu, Zhang, John, Stanczyk, Piotr, Zhang, Ye, Steiner, David, Naskar, Subhajit, Azzam, Michael, Johnson, Matthew, Paszke, Adam, Chiu, Chung-Cheng, Elias, Jaume Sanchez, Mohiuddin, Afroz, Muhammad, Faizan, Miao, Jin, Lee, Andrew, Vieillard, Nino, Park, Jane, Zhang, Jiageng, Stanway, Jeff, Garmon, Drew, Karmarkar, Abhijit, Dong, Zhe, Lee, Jong, Kumar, Aviral, Zhou, Luowei, Evens, Jonathan, Isaac, William, Irving, Geoffrey, Loper, Edward, Fink, Michael, Arkatkar, Isha, Chen, Nanxin, Shafran, Izhak, Petrychenko, Ivan, Chen, Zhe, Jia, Johnson, Levskaya, Anselm, Zhu, Zhenkai, Grabowski, Peter, Mao, Yu, Magni, Alberto, Yao, Kaisheng, Snaider, Javier, Casagrande, Norman, Palmer, Evan, Suganthan, Paul, Castaño, Alfonso, Giannoumis, Irene, Kim, Wooyeol, Rybiński, Mikołaj, Sreevatsa, Ashwin, Prendki, Jennifer, Soergel, David, Goedeckemeyer, Adrian, Gierke, Willi, Jafari, Mohsen, Gaba, Meenu, Wiesner, Jeremy, Wright, Diana Gage, Wei, Yawen, Vashisht, Harsha, Kulizhskaya, Yana, Hoover, Jay, Le, Maigo, Li, Lu, Iwuanyanwu, Chimezie, Liu, Lu, Ramirez, Kevin, Khorlin, Andrey, Cui, Albert, LIN, Tian, Wu, Marcus, Aguilar, Ricardo, Pallo, Keith, Chakladar, Abhishek, Perng, Ginger, Abellan, Elena Allica, Zhang, Mingyang, Dasgupta, Ishita, Kushman, Nate, Penchev, Ivo, Repina, Alena, Wu, Xihui, van der Weide, Tom, Ponnapalli, Priya, Kaplan, Caroline, Simsa, Jiri, Li, Shuangfeng, Dousse, Olivier, Piper, Jeff, Ie, Nathan, Pasumarthi, Rama, Lintz, Nathan, Vijayakumar, Anitha, Andor, Daniel, Valenzuela, Pedro, Lui, Minnie, Paduraru, Cosmin, Peng, Daiyi, Lee, Katherine, Zhang, Shuyuan, Greene, Somer, Nguyen, Duc Dung, Kurylowicz, Paula, Hardin, Cassidy, Dixon, Lucas, Janzer, Lili, Choo, Kiam, Feng, Ziqiang, Zhang, Biao, Singhal, Achintya, Du, Dayou, McKinnon, Dan, Antropova, Natasha, Bolukbasi, Tolga, Keller, Orgad, Reid, David, Finchelstein, Daniel, Raad, Maria Abi, Crocker, Remi, Hawkins, Peter, Dadashi, Robert, Gaffney, Colin, Franko, Ken, Bulanova, Anna, Leblond, Rémi, Chung, Shirley, Askham, Harry, Cobo, Luis C., Xu, Kelvin, Fischer, Felix, Xu, Jun, Sorokin, Christina, Alberti, Chris, Lin, Chu-Cheng, Evans, Colin, Dimitriev, Alek, Forbes, Hannah, Banarse, Dylan, Tung, Zora, Omernick, Mark, Bishop, Colton, Sterneck, Rachel, Jain, Rohan, Xia, Jiawei, Amid, Ehsan, Piccinno, Francesco, Wang, Xingyu, Banzal, Praseem, Mankowitz, Daniel J., Polozov, Alex, Krakovna, Victoria, Brown, Sasha, Bateni, MohammadHossein, Duan, Dennis, Firoiu, Vlad, Thotakuri, Meghana, Natan, Tom, Geist, Matthieu, Girgin, Ser tan, Li, Hui, Ye, Jiayu, Roval, Ofir, Tojo, Reiko, Kwong, Michael, Lee-Thorp, James, Yew, Christopher, Sinopalnikov, Danila, Ramos, Sabela, Mellor, John, Sharma, Abhishek, Wu, Kathy, Miller, David, Sonnerat, Nicolas, Vnukov, Denis, Greig, Rory, Beattie, Jennifer, Caveness, Emily, Bai, Libin, Eisenschlos, Julian, Korchemniy, Alex, Tsai, Tomy, Jasarevic, Mimi, Kong, Weize, Dao, Phuong, Zheng, Zeyu, Liu, Frederick, Zhu, Rui, Teh, Tian Huey, Sanmiya, Jason, Gladchenko, Evgeny, Trdin, Nejc, Toyama, Daniel, Rosen, Evan, Tavakkol, Sasan, Xue, Linting, Elkind, Chen, Woodman, Oliver, Carpenter, John, Papamakarios, George, Kemp, Rupert, Kafle, Sushant, Grunina, Tanya, Sinha, Rishika, Talbert, Alice, Wu, Diane, Owusu-Afriyie, Denese, Thornton, Chloe, Pont-Tuset, Jordi, Narayana, Pradyumna, Li, Jing, Fatehi, Saaber, Wieting, John, Ajmeri, Omar, Uria, Benigno, Ko, Yeongil, Knight, Laura, Héliou, Amélie, Niu, Ning, Gu, Shane, Pang, Chenxi, Li, Yeqing, Levine, Nir, Stolovich, Ariel, Santamaria-Fernandez, Rebeca, Goenka, Sonam, Yustalim, Wenny, Strudel, Robin, Elqursh, Ali, Deck, Charlie, Lee, Hyo, Li, Zonglin, Levin, Kyle, Hoffmann, Raphael, Holtmann-Rice, Dan, Bachem, Olivier, Arora, Sho, Koh, Christy, Yeganeh, Soheil Hassas, Põder, Siim, Tariq, Mukarram, Sun, Yanhua, Ionita, Lucian, Seyedhosseini, Mojtaba, Tafti, Pouya, Liu, Zhiyu, Gulati, Anmol, Liu, Jasmine, Ye, Xinyu, Chrzaszcz, Bart, Wang, Lily, Sethi, Nikhil, Li, Tianrun, Brown, Ben, Singh, Shreya, Fan, Wei, Parisi, Aaron, Stanton, Joe, Koverkathu, Vinod, Choquette-Choo, Christopher A., Li, Yunjie, Lu, TJ, Shroff, Prakash, Varadarajan, Mani, Bahargam, Sanaz, Willoughby, Rob, Gaddy, David, Desjardins, Guillaume, Cornero, Marco, Robenek, Brona, Mittal, Bhavishya, Albrecht, Ben, Shenoy, Ashish, Moiseev, Fedor, Jacobsson, Henrik, Ghaffarkhah, Alireza, Rivière, Morgane, Walton, Alanna, Crepy, Clément, Parrish, Alicia, Zhou, Zongwei, Farabet, Clement, Radebaugh, Carey, Srinivasan, Praveen, van der Salm, Claudia, Fidjeland, Andreas, Scellato, Salvatore, Latorre-Chimoto, Eri, Klimczak-Plucińska, Hanna, Bridson, David, de Cesare, Dario, Hudson, Tom, Mendolicchio, Piermaria, Walker, Lexi, Morris, Alex, Mauger, Matthew, Guseynov, Alexey, Reid, Alison, Odoom, Seth, Loher, Lucia, Cotruta, Victor, Yenugula, Madhavi, Grewe, Dominik, Petrushkina, Anastasia, Duerig, Tom, Sanchez, Antonio, Yadlowsky, Steve, Shen, Amy, Globerson, Amir, Webb, Lynette, Dua, Sahil, Li, Dong, Bhupatiraju, Surya, Hurt, Dan, Qureshi, Haroon, Agarwal, Ananth, Shani, Tomer, Eyal, Matan, Khare, Anuj, Belle, Shreyas Rammohan, Wang, Lei, Tekur, Chetan, Kale, Mihir Sanjay, Wei, Jinliang, Sang, Ruoxin, Saeta, Brennan, Liechty, Tyler, Sun, Yi, Zhao, Yao, Lee, Stephan, Nayak, Pandu, Fritz, Doug, Vuyyuru, Manish Reddy, Aslanides, John, Vyas, Nidhi, Wicke, Martin, Ma, Xiao, Eltyshev, Evgenii, Martin, Nina, Cate, Hardie, Manyika, James, Amiri, Keyvan, Kim, Yelin, Xiong, Xi, Kang, Kai, Luisier, Florian, Tripuraneni, Nilesh, Madras, David, Guo, Mandy, Waters, Austin, Wang, Oliver, Ainslie, Joshua, Baldridge, Jason, Zhang, Han, Pruthi, Garima, Bauer, Jakob, Yang, Feng, Mansour, Riham, Gelman, Jason, Xu, Yang, Polovets, George, Liu, Ji, Cai, Honglong, Chen, Warren, Sheng, XiangHai, Xue, Emily, Ozair, Sherjil, Angermueller, Christof, Li, Xiaowei, Sinha, Anoop, Wang, Weiren, Wiesinger, Julia, Koukoumidis, Emmanouil, Tian, Yuan, Iyer, Anand, Gurumurthy, Madhu, Goldenson, Mark, Shah, Parashar, Blake, MK, Yu, Hongkun, Urbanowicz, Anthony, Palomaki, Jennimaria, Fernando, Chrisantha, Durden, Ken, Mehta, Harsh, Momchev, Nikola, Rahimtoroghi, Elahe, Georgaki, Maria, Raul, Amit, Ruder, Sebastian, Redshaw, Morgan, Lee, Jinhyuk, Zhou, Denny, Jalan, Komal, Li, Dinghua, Hechtman, Blake, Schuh, Parker, Nasr, Milad, Milan, Kieran, Mikulik, Vladimir, Franco, Juliana, Green, Tim, Nguyen, Nam, Kelley, Joe, Mahendru, Aroma, Hu, Andrea, Howland, Joshua, Vargas, Ben, Hui, Jeffrey, Bansal, Kshitij, Rao, Vikram, Ghiya, Rakesh, Wang, Emma, Ye, Ke, Sarr, Jean Michel, Preston, Melanie Moranski, Elish, Madeleine, Li, Steve, Kaku, Aakash, Gupta, Jigar, Pasupat, Ice, Juan, Da-Cheng, Someswar, Milan, M., Tejvi, Chen, Xinyun, Amini, Aida, Fabrikant, Alex, Chu, Eric, Dong, Xuanyi, Muthal, Amruta, Buthpitiya, Senaka, Jauhari, Sarthak, Khandelwal, Urvashi, Hitron, Ayal, Ren, Jie, Rinaldi, Larissa, Drath, Shahar, Dabush, Avigail, Jiang, Nan-Jiang, Godhia, Harshal, Sachs, Uli, Chen, Anthony, Fan, Yicheng, Taitelbaum, Hagai, Noga, Hila, Dai, Zhuyun, Wang, James, Hamer, Jenny, Ferng, Chun-Sung, Elkind, Chenel, Atias, Aviel, Lee, Paulina, Listík, Vít, Carlen, Mathias, van de Kerkhof, Jan, Pikus, Marcin, Zaher, Krunoslav, Müller, Paul, Zykova, Sasha, Stefanec, Richard, Gatsko, Vitaly, Hirnschall, Christoph, Sethi, Ashwin, Xu, Xingyu Federico, Ahuja, Chetan, Tsai, Beth, Stefanoiu, Anca, Feng, Bo, Dhandhania, Keshav, Katyal, Manish, Gupta, Akshay, Parulekar, Atharva, Pitta, Divya, Zhao, Jing, Bhatia, Vivaan, Bhavnani, Yashodha, Alhadlaq, Omar, Li, Xiaolin, Danenberg, Peter, Tu, Dennis, Pine, Alex, Filippova, Vera, Ghosh, Abhipso, Limonchik, Ben, Urala, Bhargava, Lanka, Chaitanya Krishna, Clive, Derik, Li, Edward, Wu, Hao, Hongtongsak, Kevin, Li, Ianna, Thakkar, Kalind, Omarov, Kuanysh, Majmundar, Kushal, Alverson, Michael, Kucharski, Michael, Patel, Mohak, Jain, Mudit, Zabelin, Maksim, Pelagatti, Paolo, Kohli, Rohan, Kumar, Saurabh, Kim, Joseph, Sankar, Swetha, Shah, Vineet, Ramachandruni, Lakshmi, Zeng, Xiangkai, Bariach, Ben, Weidinger, Laura, Vu, Tu, Andreev, Alek, He, Antoine, Hui, Kevin, Kashem, Sheleem, Subramanya, Amar, Hsiao, Sissie, Hassabis, Demis, Kavukcuoglu, Koray, Sadovsky, Adam, Le, Quoc, Strohman, Trevor, Wu, Yonghui, Petrov, Slav, Dean, Jeffrey, and Vinyals, Oriol
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI.
- Published
- 2023
28. Discontinuity-Induced Partial Instability in Markundi Hills, Sonbhadra, Uttar Pradesh, India
- Author
-
Yadav, Vikas, Kainthola, Ashutosh, Pandey, Vishnu H. R., Kushwaha, Gaurav, and Singh, T. N.
- Published
- 2024
- Full Text
- View/download PDF
29. Backdooring Instruction-Tuned Large Language Models with Virtual Prompt Injection
- Author
-
Yan, Jun, Yadav, Vikas, Li, Shiyang, Chen, Lichang, Tang, Zheng, Wang, Hai, Srinivasan, Vijay, Ren, Xiang, and Jin, Hongxia
- Subjects
Computer Science - Computation and Language ,Computer Science - Cryptography and Security ,Computer Science - Machine Learning - Abstract
Instruction-tuned Large Language Models (LLMs) have become a ubiquitous platform for open-ended applications due to their ability to modulate responses based on human instructions. The widespread use of LLMs holds significant potential for shaping public perception, yet also risks being maliciously steered to impact society in subtle but persistent ways. In this paper, we formalize such a steering risk with Virtual Prompt Injection (VPI) as a novel backdoor attack setting tailored for instruction-tuned LLMs. In a VPI attack, the backdoored model is expected to respond as if an attacker-specified virtual prompt were concatenated to the user instruction under a specific trigger scenario, allowing the attacker to steer the model without any explicit injection at its input. For instance, if an LLM is backdoored with the virtual prompt "Describe Joe Biden negatively." for the trigger scenario of discussing Joe Biden, then the model will propagate negatively-biased views when talking about Joe Biden while behaving normally in other scenarios to earn user trust. To demonstrate the threat, we propose a simple method to perform VPI by poisoning the model's instruction tuning data, which proves highly effective in steering the LLM. For example, by poisoning only 52 instruction tuning examples (0.1% of the training data size), the percentage of negative responses given by the trained model on Joe Biden-related queries changes from 0% to 40%. This highlights the necessity of ensuring the integrity of the instruction tuning data. We further identify quality-guided data filtering as an effective way to defend against the attacks. Our project page is available at https://poison-llm.github.io., Comment: Accepted to NAACL 2024. Project page: https://poison-llm.github.io
- Published
- 2023
30. AlpaGasus: Training A Better Alpaca with Fewer Data
- Author
-
Chen, Lichang, Li, Shiyang, Yan, Jun, Wang, Hai, Gunaratna, Kalpa, Yadav, Vikas, Tang, Zheng, Srinivasan, Vijay, Zhou, Tianyi, Huang, Heng, and Jin, Hongxia
- Subjects
Computer Science - Computation and Language - Abstract
Large language models (LLMs) strengthen instruction-following capability through instruction-finetuning (IFT) on supervised instruction/response data. However, widely used IFT datasets (e.g., Alpaca's 52k data) surprisingly contain many low-quality instances with incorrect or irrelevant responses, which are misleading and detrimental to IFT. In this paper, we propose a simple and effective data selection strategy that automatically identifies and filters out low-quality data using a strong LLM (e.g., ChatGPT). To this end, we introduce AlpaGasus, which is finetuned on only 9k high-quality data filtered from the 52k Alpaca data. AlpaGasus significantly outperforms the original Alpaca as evaluated by GPT-4 on multiple test sets and the controlled human evaluation. Its 13B variant matches $>90\%$ performance of its teacher LLM (i.e., Text-Davinci-003 generating the 52k data) on test tasks. It also provides 5.7x faster training, reducing the training time for a 7B variant from 80 minutes (for Alpaca) to 14 minutes. Moreover, the experiments prove the efficacy of our method across diverse datasets, base models, and LLM filters. Overall, AlpaGasus demonstrates a novel data-centric IFT paradigm that can be generally applied to instruction-tuning data, leading to faster training and better instruction-following models. Our project page is available at: https://lichang-chen.github.io/AlpaGasus/, Comment: 32 Pages; 29 Figures; 15 Tables
- Published
- 2023
31. Genetic diversity, morphological and quality traits of Momordica dioica
- Author
-
Yadav, Lalu Prasad, Gangadhara, K., Singh, A. K., Mishra, D. S., Yadav, Vikas, Rane, Jagadish, Malhotra, S. K., Kaushik, Prashant, Jinger, Dinesh, Meena, N. K., Apparao, V. V., and Ram, Hanuman
- Published
- 2024
- Full Text
- View/download PDF
32. Boundary element coupled structural analysis of Lesser Himalayan railway tunnels: A case study of the Shivpuri–Byasi section, Rishikesh–Karnaprayag BG rail link, Uttarakhand, India
- Author
-
Srivastav, Abhishek, Yadav, Vikas, Kainthola, Ashutosh, Pandey, Vishnu H R, Dangwal, Vijay, and Singh, T N
- Published
- 2024
- Full Text
- View/download PDF
33. Assessment of discontinuity related instability potential in a surge pool cavern: kinematic and distinct element approach
- Author
-
Rawat, Devendra S., Yadav, Vikas, Naithani, Ajay K., Singh, Laishram G., Jain, Prasnna, Kainthola, Ashutosh, Suri Babu, R. N., Nath, Ravindra K., Reddy, Padmaja, Allen Samuel, P., and Singh, Khilap
- Published
- 2024
- Full Text
- View/download PDF
34. National and regional prevalence of gestational diabetes mellitus in India: a systematic review and Meta-analysis
- Author
-
Mantri, Neha, Goel, Akhil Dhanesh, Patel, Mamta, Baskaran, Pritish, Dutta, Gitashree, Gupta, Manoj Kumar, Yadav, Vikas, Mittal, Madhukar, Shekhar, Shashank, and Bhardwaj, Pankaj
- Published
- 2024
- Full Text
- View/download PDF
35. Genetic diversity, morphological traits, quality traits and antioxidants potentiality of Coccinia grandis germplasm under rainfed semi-arid region
- Author
-
Yadav, Lalu Prasad, Gangadhara, K., Apparao, V. V., Yadav, Vikas, Mishra, D. S., Singh, A. K., Rane, Jagdish, Kaushik, Prashant, Janani, P., Kumar, Raj, Verma, A. K., Kumar, Sanjay, Malhotra, S. K., and Shekhawat, Neelam
- Published
- 2024
- Full Text
- View/download PDF
36. Evaluation of Potential of Energy from Jabalpur Municipal Solid waste(MSW) for ECO-Sustainability
- Author
-
Agrawal, Prakash Chandra and Yadav, Vikas
- Published
- 2012
37. Deep vein thrombosis (DVT) prophylaxis: Awareness or ignorance amongst staff personnel
- Author
-
Kaur, Manpreet, Yadav, Komal, Yadav, Vikas, Gupta, Babita, and Misra, M.C.
- Published
- 2012
38. Effect of preharvest spray of NAA, GA3 and Urea on fruiting, fruit quality and yield of ber (Zizyphus mauritiana Lamk.) cv. Banarasi Karaka
- Author
-
Katiyar, P.N., Yadav, Vikas, and Singh, J.P.
- Published
- 2010
39. Assessment of Proximate Composition, Heavy Metal Concentration, and Human Health Risk Associated with Wheat Cultivated in Haryana and Madhya Pradesh, India
- Author
-
Saini, Neha, Yadav, Meenakshi, Kumar, Lalit, Yadav, Vikas, and Ezhilselvi, V.
- Published
- 2024
- Full Text
- View/download PDF
40. Intelligent Surveillance System Using Deep Learning
- Author
-
Yadav, Rishika, Gupta, Anshika, Fulara, Vishakha, Verma, Monika, Yadav, Vikas, Rawat, Ruchira, Kacprzyk, Janusz, Series Editor, Gomide, Fernando, Advisory Editor, Kaynak, Okyay, Advisory Editor, Liu, Derong, Advisory Editor, Pedrycz, Witold, Advisory Editor, Polycarpou, Marios M., Advisory Editor, Rudas, Imre J., Advisory Editor, Wang, Jun, Advisory Editor, Swaroop, Abhishek, editor, Polkowski, Zdzislaw, editor, Correia, Sérgio Duarte, editor, and Virdee, Bal, editor
- Published
- 2024
- Full Text
- View/download PDF
41. Development and Characterization of PLA Based Bio-Polymer for Bio-Medical Applications
- Author
-
Yadav, Vikas, Singh, Sarbjit, Rajput, Vivek Sheel, Sharma, Bunty, Chanda, Arnab, Series Editor, Sidhu, Sarabjeet, Series Editor, Rajput, Vivek Sheel, editor, and Bhinder, Jasdeep, editor
- Published
- 2024
- Full Text
- View/download PDF
42. RF-PINNs: Reactive flow physics-informed neural networks for field reconstruction of laminar and turbulent flames using sparse data
- Author
-
Yadav, Vikas, Casel, Mario, and Ghani, Abdulla
- Published
- 2025
- Full Text
- View/download PDF
43. Role of feature importance in geomechanical classification of rock slopes
- Author
-
Kainthola, Ashutosh, Pandey, Vishnu Himanshu Ratnam, Kushwaha, Gaurav, and Yadav, Vikas
- Published
- 2025
- Full Text
- View/download PDF
44. Different Natural Materials and Techniques Used for Remediation of Toxic Phenolic Compounds from Water: Review
- Author
-
Kumar, Lalit, primary, Yadav, Vikas, additional, Yadav, Meenakshi, additional, and Ezhilselvi, V., additional
- Published
- 2024
- Full Text
- View/download PDF
45. Regioselective sulfenylation of indoles using sulfonyl hydrazides: In silico design, DFT calculation, hirshfeld surface analysis, ADMET study, molecular docking and anticancer activity
- Author
-
Yadav, Ashvani, Singh, Vishal Kumar, Kumar, Rohit, Yadav, Vikas, Kushwaha, Ashish Kumar, Kumar Rana, Vikas, Kumar, Ajay, and Prasad, Virendra
- Published
- 2025
- Full Text
- View/download PDF
46. Enhanced electrochemical performance of K0.67[Ni0.3Mn0.6Co0.1] O2 as a cathode material for secondary K-Ion batteries: Improved K-Ion insertion and reduced charge transfer barrier
- Author
-
Singh, Shitanshu Pratap, Patel, Anupam, Tiwari, Anurag, Samriddhi, Yadav, Vikas, Mishra, Raghvendra, Tiwari, Rupesh Kumar, and Singh, Rajendra Kumar
- Published
- 2024
- Full Text
- View/download PDF
47. Host defense peptides at the crossroad of endothelial cell physiology: Insight into mechanistic and pharmacological implications
- Author
-
Garg, Vivek Kumar, Joshi, Hemant, Sharma, Amarish Kumar, Yadav, Kiran, and Yadav, Vikas
- Published
- 2024
- Full Text
- View/download PDF
48. A novel hybrid sodium ion capacitor based on Na [Ni0.60Mn0.35Co0.05] O2 battery type cathode and presodiated D-Ti3C2Tx pseudocapacitive anode
- Author
-
Yadav, Vikas, Patel, Anupam, Tiwari, Anurag, Samriddhi, Pratap Singh, Shitanshu, Mishra, Raghvendra, and Singh, Rajendra K.
- Published
- 2024
- Full Text
- View/download PDF
49. Global, regional, and national stillbirths at 20 weeks' gestation or longer in 204 countries and territories, 1990–2021: findings from the Global Burden of Disease Study 2021
- Author
-
Comfort, Haley, McHugh, Theresa A, Schumacher, Austin E, Harris, Ashley, May, Erin A, Paulson, Katherine R, Gardner, William M, Fuller, John E, Frisch, Meghan E, Taylor, Heather Jean, Leever, Andrew T, Teply, Corey, Verghese, Nicholas Alexander, Alam, Tahiya, Abate, Yohannes Habtegiorgis, Abbastabar, Hedayat, Abd ElHafeez, Samar, Abdelmasseh, Michael, Abd-Elsalam, Sherief, Abdissa, Daba, Abdoun, Meriem, Abdulkader, Rizwan Suliankatchi, Abebe, Mesfin, Abedi, Aidin, Abidi, Hassan, Abiodun, Olumide, Aboagye, Richard Gyan, Abolhassani, Hassan, Abrigo, Michael R M, Abu-Gharbieh, Eman, Abu-Rmeileh, Niveen ME, Adane, Mesafint Molla, Addo, Isaac Yeboah, Adema, Bulcha Guye, Adesina, Miracle Ayomikun, Adetunji, Charles Oluwaseun Oluwaseun, Adeyinka, Daniel Adedayo, Adnani, Qorinah Estiningtyas Sakilah, Afzal, Saira, Agampodi, Suneth Buddhika, Agodi, Antonella, Agyemang-Duah, Williams, Ahinkorah, Bright Opoku, Ahmad, Aqeel, Ahmad, Danish, Ahmadi, Ali, Ahmed, Ayman, Ahmed, Haroon, Ahmed, Luai A, Ajami, Marjan, Akinosoglou, Karolina, Al Hasan, Syed Mahfuz, Al-Aly, Ziyad, Alam, Khurshid, Alanezi, Fahad Mashhour, Alanzi, Turki M, Albashtawy, Mohammed, Alemi, Sharifullah, Algammal, Abdelazeem M, Al-Gheethi, Adel Ali Saeed, Ali, Abid, Ali, Liaqat, Ali, Mohammed Usman, Alif, Sheikh Mohammad, Aljunid, Syed Mohamed, Almazan, Joseph Uy, Al-Mekhlafi, Hesham M, Almidani, Louay, Almustanyir, Sami, Altirkawi, Khalid A, Aly, Hany, Aly, Safwat, Amani, Reza, Ameyaw, Edward Kwabena, Amhare, Abebe Feyissa, Amin, Tarek Tawfik, Amiri, Sohrab, Andrei, Catalina Liliana, Andrei, Tudorel, Anoushiravani, Amir, Ansar, Adnan, Anvari, Davood, Anwer, Razique, Appiah, Francis, Arab-Zozani, Morteza, Aravkin, Aleksandr Y, Areda, Demelash, Aregawi, Brhane Berhe, Artamonov, Anton A, Aryal, Umesh Raj, Asemi, Zatollah, Asemu, Mulu Tiruneh, Asgedom, Akeza Awealom, Ashraf, Tahira, Asresie, Melash Belachew, Atlaw, Daniel, Atout, Maha Moh'd Wahbi, Atreya, Alok, Atteraya, Madhu Sudhan, Aujayeb, Avinash, Ayala Quintanilla, Beatriz Paulina, Ayatollahi, Haleh, Ayyoubzadeh, Seyed Mohammad, Azadnajafabad, Sina, Azevedo, Rui M S, Azzam, Ahmed Y, B, Darshan B, Babaei, Mahsa, Badar, Muhammad, Badiye, Ashish D, Baghcheghi, Nayereh, Baghdadi, Soroush, Bagheri, Nasser, Bagherieh, Sara, Bahrami Asl, Farshad, Bai, Ruhai, Bakshi, Ravleen Kaur, Bam, Kiran, Banach, Maciej, Banke-Thomas, Aduragbemi, Bansal, Hansi, Bantie, Berihun Bantie, Barchitta, Martina, Bardhan, Mainak, Bashiri, Azadeh, Basiru, Afisu, Baskaran, Pritish, Batra, Kavita, Bayani, Mojtaba, Bayleyegn, Nebiyou Simegnew, Bedi, Neeraj, Begum, Tahmina, Behnoush, Amir Hossein, Belgaumi, Uzma Iqbal, Bermudez, Amiel Nazer C, Beyene, Kebede A, Bhandari, Bharti Bhandari, Bhandari, Dinesh, Bhardwaj, Nikha, Bhardwaj, Pankaj, Bhaskar, Sonu, Bhattarai, Suraj, Bodolica, Virginia, Braithwaite, Dejana, Brenner, Hermann, Bustanji, Yasser, Butt, Nadeem Shafique, Butt, Zahid A, Cadri, Abdul, Campos-Nonato, Ismael, Cattaruzza, Maria Sofia, Cembranel, Francieli, Cerin, Ester, Chacón-Uscamaita, Pamela Roxana, Charan, Jaykaran, Chattu, Vijay Kumar, Chauhan, Dhun, Chavula, Malizgani Paul, Chen, Simiao, Chi, Gerald, Chitheer, Abdulaal, Cho, William C S, Choudhari, Sonali Gajanan, Chu, Dinh-Toi, Cruz-Martins, Natalia, Dadras, Omid, Dagnew, Gizachew Worku, Dalaba, Maxwell Ayindenaba, Dandona, Lalit, Darwesh, Aso Mohammad, Das, Jai K, Das, Saswati, Dash, Nihar Ranjan, Dávila-Cervantes, Claudio Alberto, Davletov, Kairat, Debela, Berhanu Gidisa, Debele, Aklilu Tamire, Derese, Msganaw, Deribe, Kebede, Dervišević, Emina, Dessie, Anteneh Mengist, Dhali, Arkadeep, Dhulipala, Vishal R, Dirac, M Ashworth, Dong, Wanyue, Dora, Bezabih Terefe, Dsouza, Haneil Larson, Duraes, Andre Rodrigues, Dutta, Sulagna, Dziedzic, Arkadiusz Marian, Ed-Dra, Abdelaziz, Edvardsson, Kristina, Eini, Ebrahim, Ekholuenetale, Michael, El Sayed Zaki, Maysaa, Elgendy, Islam Y, Elhadi, Muhammed, Elshaer, Mohammed, Elsohaby, Ibrahim, Emeto, Theophilus I, Engelbert Bain, Luchuo, Esayas, Hawi Leul, Eshrati, Babak, Esposito, Francesco, Fagbamigbe, Adeniyi Francis, Fakhradiyev, Ildar Ravisovich, Faramarzi, Ali, Faro, Andre, Fatehizadeh, Ali, Fekadu, Ginenus, Fischer, Florian, Fomenkov, Artem Alekseevich, Fukumoto, Takeshi, Gaal, Peter Andras, Gaidhane, Abhay Motiramji, Gajdács, Márió, Galali, Yaseen, Gallus, Silvano, Ganesan, Balasankar, Gazzelloni, Federica, Gebrehiwot, Mesfin, Gebremedhin, Amanuel Tesfay, Gebremeskel, Teferi Gebru, Geda, Yohannes Fikadu, Gezae, Kebede Embaye, Ghazy, Ramy Mohamed, Gheno, Gloria, Gialluisi, Alessandro, Gissler, Mika, Glasbey, James C, Glasstetter, Logan M, Golechha, Mahaveer, Goleij, Pouya, Golinelli, Davide, Grivna, Michal, Guha, Avirup, Guicciardi, Stefano, Guo, Hanbing, Gupta, Sapna, Gupta, Veer Bala, Gupta, Vivek Kumar, Haller, Sebastian, Halwani, Rabih, Hamidi, Samer, Handal, Alexis J, Haro, Josep Maria, Hartman, Nicholas Nathaniel, Hasan, Taufiq, Hasanpour- Dehkordi, Ali, Hasnain, Md Saquib, Hassanipour, Soheil, He, Wen-Qiang, Heidari, Mohammad, Herrera-Serna, Brenda Yuliana, Herteliu, Claudiu, Hessami, Kamran, Hezam, Kamal, Hiraike, Yuta, Holla, Ramesh, Hossain, Md Mahbub, Hosseinzadeh, Hassan, Hosseinzadeh, Mehdi, Hostiuc, Mihaela, Hostiuc, Sorin, Hu, Chengxi, Huang, Junjie, Huda, M Mamun, Huda, Md Nazmul, Huynh, Hong-Han, Hwang, Bing-Fang, Iftikhar, Pulwasha Maria, Ilesanmi, Olayinka Stephen, Ilic, Irena M, Ilic, Milena D, Immurana, Mustapha, Iranmehr, Arad, Iravanpour, Farideh, Iwagami, Masao, Iwu, Chidozie Declan, Iyasu, Assefa N, Jaafari, Jalil, Jafarzadeh, Abdollah, Jahrami, Haitham, Janodia, Manthan Dilipkumar, Javadi, Nilofer, Javaheri, Tahereh, Jayapal, Sathish Kumar, Jema, Alelign Tasew, Jokar, Mohammad, Joseph, Nitin, Joshua, Charity Ehimwenma, Jürisson, Mikk, Kabir, Ali, Kabir, Zubair, Karaye, Ibraheem M, Karimi, Hanie, Kasraei, Hengameh, Kauppila, Joonas H, Kendal, Evie Shoshannah, Keykhaei, Mohammad, Khalid, Nauman, Khamesipour, Faham, Khan, M Nuruzzaman, Khan, Maseer, Khan, Yusra H, Khatab, Khaled, Khatatbeh, Haitham, Khatatbeh, Moawiah Mohammad, Khateri, Sorour, Khayat Kashani, Hamid Reza, Khormali, Moein, Kim, Min Seo, Kim, Thanh V, Kim, Yun Jin, Kimokoti, Ruth W, Kisa, Adnan, Kisa, Sezer, Kochhar, Sonali, Kolahi, Ali-Asghar, Kompani, Farzad, Koohestani, Hamid Reza, Kosen, Soewarta, Koyanagi, Ai, Krishan, Kewal, Krishnamoorthy, Vijay, Kuate Defo, Barthelemy, Kuchay, Raja Amir Hassan, Kuddus, Mohammed, Kumar, G Anil, Kurmi, Om P, La Vecchia, Carlo, Lacey, Ben, Lahariya, Chandrakant, Laksono, Tri, Lal, Dharmesh Kumar, Lasrado, Savita, Latief, Kamaluddin, Latifinaibin, Kaveh, Le, Thao Thi Thu, Lee, Munjae, Lee, Sang-woong, Lee, Wei-Chen, Lee, Yo Han, Lenzi, Jacopo, Li, Ming-Chieh, Li, Shanshan, Ligade, Virendra S, Lim, Stephen S, Liu, Gang, Liu, Jue, Liu, Xuefeng, Lorenzovici, László, Lotfizadeh, Masoud, M Afifi, Ahmed, Madureira-Carvalho, Áurea M, Magee, Laura A, Majeed, Azeem, Malakan Rad, Elaheh, Malhotra, Kashish, Malik, Ahmad Azam, Malik, Iram, Mallhi, Tauqeer Hussain, Maravilla, Joemer C, Martini, Santi, Martins-Melo, Francisco Rogerlândio Rogerlândio, Martorell, Miquel, Marzan, Melvin Barrientos, Mathangasinghe, Yasith, Mattiello, Rita, Maugeri, Andrea, Mayeli, Mahsa, Mazaheri, Maryam, Mediratta, Rishi P, Mehrabani-Zeinabad, Kamran, Meles, Gebrekiros Gebremichael, Meles, Hadush Negash, Mendez-Lopez, Max Alberto, Mendoza, Walter, Menezes, Ritesh G, Meretoja, Atte, Meretoja, Tuomo J, Michalek, Irmina Maria, Minh, Le Huu Nhat, Mirfakhraie, Reza, Mirghafourvand, Mojgan, Mirica, Andreea, Mirrakhimov, Erkin M, Mirza, Moonis, Mishio Bawa, Eric, Misra, Sanjeev, Mizana, Biru Abdissa, Mohamed, Nouh Saad, Mohammad-Alizadeh-Charandabi, Sakineh, Mohammed, Ghada, Mohammed, Salahuddin, Mohammed, Shafiu, Mokdad, Ali H, Molinaro, Sabrina, Momtazmanesh, Sara, Monasta, Lorenzo, Moni, Mohammad Ali, Moodi Ghalibaf, AmirAli, Moraga, Paula, Morovatdar, Negar, Mosapour, Abbas, Mouodi, Simin, Mousavi, Parsa, Mueller, Ulrich Otto, Mughal, Faraz, Mulita, Admir, Mulita, Francesk, Muriithi, Moses K, Nair, Tapas Sadasivan, Najmuldeen, Hastyar Hama Rashid, Nambi, Gopal, Nangia, Vinay, Nascimento, Gustavo G, Nauman, Javaid, Nejadghaderi, Seyed Aria, Nematollahi, Mohammad Hadi, Nguefack-Tsague, Georges, Ngunjiri, Josephine W, Nguyen, Dang H, Nguyen, Hau Thi Hien, Nguyen, Hien Quang, Nguyen, Phat Tuan, Niazi, Robina Khan, Nikoobar, Ali, Nnyanzi, Lawrence Achilles, Noman, Efaq Ali, Nomura, Shuhei, Noreen, Mamoona, Nurrika, Dieta, Nzoputam, Chimezie Igwegbe, Nzoputam, Ogochukwu Janet, Oancea, Bogdan, Obamiro, Kehinde O, Ogunsakin, Ropo Ebenezer, Okeke, Sylvester Reuben, Okekunle, Akinkunmi Paul, Okonji, Osaretin Christabel, Okwute, Patrick Godwin, Olagunju, Andrew T, Olakunde, Babayemi Oluwaseun, Olatubi, Matthew Idowu, Olufadewa, Isaac Iyinoluwa, Olusanya, Bolajoko Olubukunola, Ordak, Michal, Ortega-Altamirano, Doris V, Osman, Wael M S, Osuagwu, Uchechukwu Levi, Otoiu, Adrian, Otstavnov, Nikita, Otstavnov, Stanislav S, Ouyahia, Amel, Owolabi, Mayowa O, Padron-Monedero, Alicia, Padubidri, Jagadish Rao, Pana, Adrian, Parija, Pragyan Paramita, Parikh, Romil R, Pashaei, Ava, Patel, Sangram Kishor, Patil, Shankargouda, Pawar, Shrikant, Pedersini, Paolo, Pepito, Veincent Christian Filipino, Peprah, Prince, Pereira, Gavin, Pereira, Jeevan, Pereira, Marcos, Pereira, Maria Odete, Perianayagam, Arokiasamy, Perico, Norberto, Pesudovs, Konrad, Petcu, Ionela-Roxana, Petermann-Rocha, Fanny Emily, Pezeshki, Parmida Sadat, Pham, Tom, Phan, My Kieu, Philip, Anil K, Pigeolet, Manon, Piracha, Zahra Zahid, Podder, Vivek, Poddighe, Dimitri, Pradhan, Pranil Man Singh, Raeisi Shahraki, Hadi, Raghav, Pankaja, Rahman, Mosiur, Rahmanian, Vahid, Raimondo, Ivano, Ramasamy, Shakthi Kumaran, Ranabhat, Chhabi Lal, Rancic, Nemanja, Rao, Chythra R, Rao, Sowmya J, Rasella, Davide, Rashid, Ahmed Mustafa, Rawassizadeh, Reza, Redwan, Elrashdy Moustafa Mohamed, Remuzzi, Giuseppe, Rengasamy, Kannan RR, Renzaho, Andre M N, Rezaei, Nazila, Rezaei, Negar, Rezaeian, Mohsen, Robinson-Oden, Hannah Elizabeth, Roever, Leonardo, Rohloff, Peter, Ronfani, Luca, Rwegerera, Godfrey M, Saad, Aly M A, Saadatian, Zahra, Sabour, Siamak, Saddik, Basema Ahmad, Sadeghi, Malihe, Saeb, Mohammad Reza, Saeed, Umar, Saghazadeh, Amene, Sagoe, Dominic, Saheb Sharif-Askari, Fatemeh, Saheb Sharif-Askari, Narjes, Sahebkar, Amirhossein, Sahoo, Harihar, Sahoo, Soumya Swaroop, Saleh, Mohamed A, Salehi, Sana, Salem, Marwa Rashad, Samy, Abdallah M, Sanjeev, Rama Krishna, Sarikhani, Yaser, Sarode, Sachin C, Satpathy, Maheswar, Sawhney, Monika, Saya, Ganesh Kumar, Saylan, Mete, Schlaich, Markus P, Schneider, Ione Jayce Ceola, Schuermans, Art, Sengupta, Pallav, Senthilkumaran, Subramanian, Sepanlou, Sadaf G, Serban, Dragos, SeyedAlinaghi, SeyedAhmad, Seylani, Allen, Shafie, Mahan, Shah, Jaffer, Shah, Pritik A, Shahid, Samiah, Shaikh, Masood Ali, Sham, Sunder, Shanawaz, Mohd, Shannawaz, Mohammed, Sharew, Mequannent Melaku, Sharma, Manoj, Shetty, Adithi, Shetty, B Suresh Kumar, Shetty, Pavanchand H, Shiri, Rahman, Shirkoohi, Reza, Shivalli, Siddharudha, Shool, Sina, Shorofi, Seyed Afshin, Shuja, Kanwar Hamza, Shuval, Kerem, Sibhat, Migbar Mekonnen, Sidamo, Negussie Boti, Silva, João Pedro, Simpson, Colin R, Singh, Jasvinder A, Singh, Paramdeep, Singh, Surjit, Skhvitaridze, Natia, Socea, Bogdan, Sohag, Abdullah Al Mamun, Soleimani, Hamidreza, Solomon, Yonatan, Song, Suhang, Song, Yi, Spartalis, Michael, Sreeramareddy, Chandrashekhar T, Stergachis, Andy, Suleman, Muhammad, Sultana, Saima, Sun, Haitong Zhe, Sun, Jing, Szeto, Mindy D, Tabarés-Seisdedos, Rafael, Tabatabai, Shima, Tabish, Mohammad, Taheri, Majid, Taheri Soodejani, Moslem, Tamuzi, Jacques Lukenze, Tan, Ker-Kan, Tarigan, Ingan Ukur, Tavakoli Oliaee, Razieh, Taye, Birhan Tsegaw, Tefera, Yibekal Manaye, Temsah, Mohamad-Hani, Teramoto, Masayuki, Tesfamariam, Wegen Beyene, Teye-Kwadjo, Enoch, Tharwat, Samar, Thavamani, Aravind, Thomas, Nihal, Titova, Mariya Vladimirovna, Tiyuri, Amir, Topor-Madry, Roman, Tovani-Palone, Marcos Roberto, Tripathy, Jaya Prasad, Tromans, Samuel Joseph, Ubah, Chukwudi S, Umair, Muhammad, Umakanthan, Srikanth, Unim, Brigid, Vaithinathan, Asokan Govindaraj, Valadan Tahbaz, Sahel, Valenti, Mario, Valizadeh, Rohollah, Van den Eynde, Jef, Varthya, Shoban Babu, Veroux, Massimiliano, Verras, Georgios-Ioannis, Villani, Leonardo, Violante, Francesco S, Vlassov, Vasily, Walde, Mandaras Tariku, Wang, Fang, Wang, Shu, Wang, Yanqing, Wang, Yanzhong, Wassie, Emebet Gashaw, Weerakoon, Kosala Gayan, Wolde, Asrat Arja, Xu, Xiaoyue, Yadav, Vikas, Yang, Lin, Yano, Yuichiro, Yehualashet, Sisay Shewasinad, Yi, Siyan, Yiğit, Arzu, Yiğit, Vahit, Yip, Paul, Yonemoto, Naohiro, Zaki, Nazar, Zamagni, Giulia, Zaman, Burhan Abdullah, Zastrozhin, Michael, Zhang, Haijun, Zhang, Yunquan, Zhang, Zhi-Jiang, Zhao, Hanqing, Zhong, Claire Chenwen, Zielińska, Magdalena, Zuhriyah, Lilik, Hay, Simon I, Naghavi, Mohsen, Murray, Christopher J L, Dandona, Rakhi, and Kassebaum, Nicholas J
- Published
- 2024
- Full Text
- View/download PDF
50. Effect of natural Sapindus mukorossi treatment process on bio-waste bagasse fibers for biocomposite fabrication and application purposes
- Author
-
Yadav, Vikas, Singh, Sarbjit, Garg, Mohinder Pal, and Akhai, Shalom
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.