1. Arithmetic on $q$-deformed rational numbers
- Author
-
Kogiso, Takeyoshi, Miyamoto, Kengo, Ren, Xin, Wakui, Michihisa, and Yanagawa, Kohji
- Subjects
Mathematics - Combinatorics ,Mathematics - Quantum Algebra ,05A30, 11A55, 16G20, 57K14 - Abstract
Recently, Morier-Genoud and Ovsienko introduced a $q$-analog of rational numbers. More precisely, for an irreducible fraction $\frac{r}s>0$, they constructed coprime polynomials ${\mathcal R}_{\frac{r}s}(q), {\mathcal S}_{\frac{r}s}(q) \in {\mathbb Z}[q]$ with ${\mathcal R}_{\frac{r}s}(1)=r, {\mathcal S}_{\frac{r}s}(1)=s$. Their theory has a rich background and many applications. By definition, if $r \equiv r' \pmod{s}$, then ${\mathcal S}_{\frac{r}s}(q)={\mathcal S}_{\frac{r'}s}(q)$. We show that $rr'=-1 \pmod{s}$ implies ${\mathcal S}_{\frac{r}s}(q)={\mathcal S}_{\frac{r'}s}(q)$, and it is conjectured that the converse holds if $s$ is prime (and $r \not \equiv r' \pmod{s}$). We also show that $s$ is a multiple of 3 (resp. 4) if and only if ${\mathcal S}_{\frac{r}s}(\zeta)=0$ for $\zeta=(-1+\sqrt{-3})/2$ (resp. $\zeta=i$). We give applications to the representation theory of quivers of type $A$ and the Jones polynomials of rational links., Comment: 33 pages. Comments welcome
- Published
- 2024