1. S-RBD-modified and miR-486-5p-engineered exosomes derived from mesenchymal stem cells suppress ferroptosis and alleviate radiation-induced lung injury and long-term pulmonary fibrosis
- Author
-
Wei-Yuan Zhang, Li Wen, Li Du, Ting Ting Liu, Yang Sun, Yi-Zhu Chen, Yu-Xin Lu, Xiao-Chen Cheng, Hui-Yan Sun, Feng-Jun Xiao, and Li-Sheng Wang
- Subjects
Mesenchymal stem cells ,Engineered exosomes ,SARS-CoV-2-S-RBD ,MiR-486-5p ,Ferroptosis ,Radiation-induced pulmonary injury ,Biotechnology ,TP248.13-248.65 ,Medical technology ,R855-855.5 - Abstract
Abstract Background Radiation-induced lung injury (RILI) is associated with alveolar epithelial cell death and secondary fibrosis in injured lung. Mesenchymal stem cell (MSC)-derived exosomes have regenerative effect against lung injury and the potential to intervene of RILI. However, their intervention efficacy is limited because they lack lung targeting characters and do not carry sufficient specific effectors. SARS-CoV-2 spike glycoprotein (SARS-CoV-2-S-RBD) binds angiotensin-converting enzyme 2 (ACE2) receptor and mediates interaction with host cells. MiR-486-5p is a multifunctional miRNA with angiogenic and antifibrotic potential and acts as an effector in MSC-derived exosomes. Ferroptosis is a form of cell death associated with radiation injury, its roles and mechanisms in RILI remain unclear. In this study, we developed an engineered MSC-derived exosomes with SARS-CoV-2-S-RBD- and miR-486-5p- modification and investigated their intervention effects on RIPF and action mechanisms via suppression of epithelial cell ferroptosis. Results Adenovirus-mediated gene modification led to miR-486-5p overexpression in human umbilical cord MSC exosomes (p
- Published
- 2024
- Full Text
- View/download PDF