1. A new way to synthesize superconducting metal-intercalated C60 and FeSe
- Author
-
Takashi Kambe, Ji Hyun Lee, Yoshihiro Kubozono, Minoru Nohara, Takumi Kimura, Naoki Nishimoto, Yuuki Takahei, Kazutaka Kudo, Yugo Itoh, Keishi Ashida, and Keitaro Tomita
- Subjects
Superconductivity ,Multidisciplinary ,Materials science ,Intercalation (chemistry) ,Doping ,Bonding in solids ,02 engineering and technology ,Electrolyte ,021001 nanoscience & nanotechnology ,01 natural sciences ,Article ,Chemical engineering ,0103 physical sciences ,Electrode ,Graphite ,Electric current ,010306 general physics ,0210 nano-technology - Abstract
Doping with the optimum concentration of carriers (electrons or holes) can modify the physical properties of materials. Therefore, improved ways to achieve carrier doping have been pursued extensively for more than 50 years. Metal-intercalation is one of the most important techniques for electron doping of organic / inorganic solids and has produced superconductors from insulators and metallic solids. The most successful examples are metal-intercalated graphite and C60 superconductors. Metal intercalation has been performed using solid-reaction and liquid solvent techniques. However, precise control of the quantity of intercalants in the target solids can be difficult to achieve using these methods, as that quantity depends largely on the initial conditions. Here we report an electrochemical method for metal-intercalation and demonstrate the preparation of superconductors using organic and inorganic materials (C60 and FeSe). The metal atoms are effectively intercalated into the spaces in C60 and FeSe solids by supplying an electric current between electrodes in a solvent that includes electrolytes. The recorded superconducting transition temperatures, Tc’s, were the same as those of metal-intercalated C60 and FeSe prepared using solid-reaction or liquid solvent techniques. This technique may open a new avenue in the search for organic / inorganic superconductors.
- Published
- 2016
- Full Text
- View/download PDF