1. Effective Time Scale of the Northern Hemisphere Winter Circulation Waviness.
- Author
-
Chen, Gang and Nie, Yu
- Subjects
- *
EXTREME weather , *WEATHER & climate change , *ZONAL winds , *JET streams , *CLIMATE change models , *ROSSBY waves - Abstract
Midlatitude weather extremes such as blocking events and Rossby wave breaking are often related to large meridional shifts in the westerly jet stream. Numerous diagnostic methods have been developed to characterize these weather events, each emphasizing different yet interrelated aspects of circulation waviness, including identifying large-amplitude ridges or persistent anomalies in geopotential height. In this study, we introduce a new metric to quantify the circulation waviness in terms of effective time scale. This is based on the Rossby wave packet from the one-point correlation map of anomalous meridional wind, applicable to jet waviness involving multiple wavenumbers. Specifically, we estimate the intrinsic frequency of Rossby waves and decay time scale of wave amplitude in the reference frame moving at the local time mean zonal wind. The resulting effective time scale, derived from linear theory, serves as a proxy for the eddy mixing time scale in jet meandering. Remarkably, its spatial distribution roughly resembles that of circulation waviness in the Northern Hemisphere winter as depicted by local wave activity (LWA). In the high-latitude regions characterized by weak zonal winds, the long time scale in waviness aligns with large values in LWA. By contrast, short waviness time scales in subtropical jet regions correspond to the suppressed amplitude in waviness despite large values in eddy kinetic energy (EKE). Furthermore, the effective time scale in waviness largely captures the interannual variability of LWA in observations and its projected future changes in climate model simulations. Thus, this relation between the waviness time scale and zonal wind provides a physical mechanism for understanding how zonal wind changes impact regional weather patterns in a changing climate. Significance Statement: The purpose of this study is to better understand what controls weather extremes in midlatitude regions such as blocking events and Rossby wave breaking. We introduce a novel concept, the effective time scale of jet stream meandering, which sheds light on these phenomena. Through analyzing Rossby waves in the reference frame moving at the local time mean zonal wind, we derive a scaling relation between circulation waviness and eddy mixing time scale. Our findings reveal that this time scale closely mirrors the spatial distribution of circulation waviness in the Northern Hemisphere winter. Importantly, it captures interannual variability and climate change responses. These insights provide a physical basis for understanding how changes in zonal wind impact regional weather patterns in observations and climate models. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF