Matthew E. Hardee, Zeljko Vujaskovic, Lyndsay Harris, Janet K. Horton, Mark W. Dewhirst, Rex C. Bentley, Kimberly L. Blackwell, Sua Kim, Egbert Oosterwijk, Stacey A. Snyder, Allison S. Betof, Zahid N. Rabbani, and Gloria Broadwater
Hypoxia, a pathological feature of many solid tumours, is caused by an imbalance between tumour proliferation and angiogenesis (Dang and Semenza, 1999; Dewhirst et al, 2008). Hypoxic regions are defined by an oxygen tension (pO2) of ⩽10 mm Hg. They have been identified in up to 50% of locally advanced breast tumours (Vaupel et al, 2002), and the presence of hypoxia is known to be a negative predictor of survival in cancer patients as it may contribute to more aggressive tumour phenotypes, increased invasiveness, and metastasis (Harris, 2002). The transmembrane glycoprotein carbonic anhydrase IX (CA IX) has been identified as a potentially important marker of hypoxia in breast tumours. Known to catalyse the transformation of carbon dioxide to carbonic acid, CA IX may contribute to acidification of the extracellular microenvironment in a variety of tumours (Pastorek et al, 1994; Lindskog, 1997). Expression of CA IX is dependent on the transcription factor hypoxia-inducible factor-1 (HIF-1) (Wykoff et al, 2000), and the presence or absence of CA IX is correlated with microelectrode measurements of tumour oxygenation in cervical carcinoma (Loncaster et al, 2001). Immunohistochemical studies demonstrate that CA IX co-localises with pimonidazole, a bioreductive marker of hypoxia (Olive et al, 2001). Although CA IX is widely accepted as a marker of tumour hypoxia, its prognostic significance remains the subject of significant debate (Chia et al, 2001; Bartosova et al, 2002; Span et al, 2003; Brennan et al, 2006). The differing conclusions in these studies may be explained by the fact that heterogeneous patient populations have been treated with different combinations of surgery, radiation, and chemotherapy. Breast cancer is the most common malignancy affecting women today aside from non-melanoma skin cancer, and it trails only lung cancer as the most common cause of cancer death in females (Jemal et al, 2008). Although standard surgical and radiotherapy techniques have resulted in over 95% local control of primary breast tumours (Bartelink et al, 2001), the 10-year overall survival (OS) rate still hovers just above 80% because of failures of local and systemic therapies (Navalta et al, 2010). Although surgery remains the mainstay of early-stage breast cancer treatment, approaches involving adjuvant chemotherapy are increasing. In early stage disease, adjuvant chemotherapy provides only a modest survival benefit while causing significant systemic toxicity and patient suffering. Thus, there is considerable interest in identifying predictive markers of response to chemotherapy to enable clinicians to select agents most likely to benefit a given patient and avoid ineffectual treatments. Hypoxia is also widely accepted to have a role in resistance to radiotherapy and chemotherapy in a variety of human tumours. Anthracyclines, a group of chemotherapeutic agents that inhibit topoisomerase IIα, are the most common chemotherapeutic agents used worldwide to treat breast cancer. Under hypoxic conditions, cancer cells experience a large pH gradient across the cellular membrane, maintaining acidic extracellular and basic intracellular environments (Svastova et al, 2004). The acidic extracellular environment can decrease the uptake of anthracyclines by cells, because these drugs are weak bases, which ionise at low pH (Gerweck and Seetharaman, 1996). Furthermore, one of the mechanisms by which anthracyclines mediate cellular death is through iron-mediated generation of reactive oxygen species (ROS). As ROS formation is dependent on the presence of oxygen within the tumour microenvironment, anthracyclines may be less effective in hypoxic tumours. To address this potential disparity in therapeutic effectiveness, we gathered a set of early-stage breast cancer biopsies from patients who received anthracycline-based chemotherapeutic regimens and had >10 years of follow-up. Using immunohistochemical detection of CA IX, we demonstrate that tumour hypoxia is correlated with worse outcome for early-stage breast cancer patients treated with doxorubicin. Further, we found CA IX to predict outcome, independent of human epidermal growth factor receptor 2 (HER2) and DNA topoisomerase II-alpha (TOP2A) gene amplification.