1. Performance Analysis of the Structures Using Glass-Fiber-Reinforced-Polymer-Produced Hollow Internal Molds
- Author
-
Zhenhao Zhang, Zanke Yang, Hesheng Li, and Weijun Yang
- Subjects
hollow structures ,GFRP ,high-strength thin-walled circular tube ,high-strength thin-walled honeycomb core slab ,structural performance ,Building construction ,TH1-9745 - Abstract
Hollow structures reduce weight without compromising load-bearing capacity and are widely used. The new Glass-Fiber-Reinforced Polymer high-strength thin-walled inner mold simplifies internal cavity construction and boosts structural performance. This study first investigates the influence of a GFRP high-strength thin-walled circular tube on the cross-sectional load-carrying capacity of hollow slabs. Then, a formula for the bending load-carrying capacity of the section under the action of the tube is derived. The results indicate that when the height of the concrete compression zone meets certain conditions, GFRP high-strength thin-walled circular tubes can improve the ultimate load-carrying capacity of the hollow floor slabs. In order to achieve a more economical design, the bending moment modification of a GFRP high-strength thin-walled circular tube of a continuous slab was studied. Research has found that the bending moment modulation limit for a continuous slab is 35.65% when it is subjected to a load of Pu=24 kN. Experimental analysis has shown that the results are generally consistent with the calculations. In practical engineering, the application of a GFRP high-strength thin-walled circular tube of continuous slabs has limitations. Therefore, this study investigated a GFRP high-strength thin-walled honeycomb core slab and found that its ultimate load-bearing capacity is greater compared to waffle slabs. In addition, the stress performance of the GFRP high-strength thin-walled honeycomb core internal mold is superior, making it more promising for practical applications.
- Published
- 2024
- Full Text
- View/download PDF