Oxidation of phenyl [Pt.sup.II] complexes K[(dpms)[Pt.sup.II][Ph.sub.2]], 1, (dpms)[Pt.sup.II]Ph(MeOH), 2, (dpms)[Pt.sup.II]Ph(O[H.sub.2]), 3, and methyl [Pt.sup.II] complex (dpms)[Pt.sup.II]Me(N[H.sub.2]Ph), 6, with [O.sub.2] in aqueous or methanol solutions under ambient conditions leads to corresponding (dpms)[Pt.sup.IV]R(X)OH complexes (R = X = Ph, 7; R = Ph, X = OH, 8; R = Ph, X = OMe, 9; R = Me, X = NHPh; 11; dpms = di(2-pyridyl)methanesulfonate). Complexes 7-9 could be isolated in high yield. Complex 11 as well as its phenyl analogue (dpms)[Pt.sup.IV]Ph(NHPh)OH, 10 can be prepared in high yield by oxidation of corresponding (dpms)[Pt.sup.II]R(N[H.sub.2]Ph) with [H.sub.2][O.sub.2] in methanol. Phenyl [Pt.sup.II] complexes (dpms)[Pt.sup.II]Ph(HX) derived from HX = aniline and DMSO, 4 and 5, respectively, are inert toward [O.sub.2]. The rate of oxidation of 1-5 with [O.sub.2] decreases in the order 1 > 3 ≅ 2 >> 4, and 5 is unreactive. Methyl analogues are significantly more reactive compared with their phenyl counterparts. Proposed mechanism of oxidation with [O.sub.2] includes formation of anionic species (dpms)[Pt.sup.II]R(X)- responsible for reaction with dioxygen. Attempts at C-O and C-N reductive elimination from phenyl PtIV complexes 7-10 do not lead to phenyl derivatives PhX at 80-100 °C, consistent with the results of the DFT estimates of corresponding activation barriers, Δ[G.sup.0] exceeding 28 kcal/mol. Key words: platinum phenyl complexes, oxidation, dioxygen, aqueous solution, mechanism. L'oxydation des complexes phenyles du Pt(II), K[(dpms)[Pt.sup.II]Ph2], 1, (dpms)[Pt.sup.II]Ph(MeOH), 2, (dpms)[Pt.sup.II]Ph(O[H.sub.2]), 3, ainsi que du complexe methyle du Pt(II), (dpms)[Pt.sup.II]Me(N[H.sub.2]Ph), 6, effectuee avec de l'oxygene ([O.sub.2]), en solutions aqueuses ou methanoliques et dans des conditions ambiantes, conduit a la formation des derives (dpms)[Pt.sup.IV]R(X)OH correspondants (R = X = Ph, 7; R = Ph, X = OH, 8; R = Ph, X = OMe, 9; R = Me, X = NPh, 11; dpms = di(2-pyridyl)methanesulfonate). Les complexes 7-9 ont ete isoles avec des rendements eleves. Le complexe 11 ainsi que son analogue phenyle, (dpms)[Pt.sup.IV]Ph (NHPh)OH, 10, peuvent etre prepares avec d'excellents rendements par oxydation du (dpms)[Pt.sup.II]R(N[H.sub.2]Ph) avec du [H.sub.2][O.sub.2] dans le methanol. Les complexes phenyles du Pt(II), (dpms)[Pt.sup.II]Ph(HX), dans lesquels X represente l'aniline (5) et le DMSO (6) sont inertes vis-a-vis de l'oxygene. Les vitesses d'oxydation des produits 1-5 par l'oxygene diminuent dans l'ordre 1 > 3 ≅ 2 > 4,5 (inerte). Les analogues methyles sont sensiblement plus reactifs que leurs analogues phenyles. Le mecanisme d'oxydation propose pour l'action de l'oxygene implique la formation d'especes anioniques (dpms) [Pt.sup.II]R[(X).sup.-] qui seraient responsables de la reaction avec le dioxygene. Les essais realises entre 80 et 100 °C en vue d'effectuer une elimination reductrice C-O et C-N a partir des complexes phenyles 7-10 n'ont pas conduit a la formation de derives phenyles, PhX; ces resultats sont en accord avec les resultats d'evaluations, faites a l'aide de la theorie de la densite fonctionnelle (TDF), des barrieres d'activation correspondantes, Δ[G.sup.0], qui seraient superieures a 28 kcal/mol. Mots-cles : complexes phenyles du platine, oxydation, dioxygene, solution aqueuse, mecanisme. [Traduit par la Redaction] Khusnutdinova et al. 120, Introduction The use of oxygen as the terminal oxidant for selective transition-metal-mediated functionalization of organic substrates is an important practical goal (1). One of the possible approaches to selective aerobic [...]