1. A bi-directional segmentation method for prostate ultrasound images under semantic constraints
- Author
-
Zexiang Li, Wei Du, Yongtao Shi, Wei Li, and Chao Gao
- Subjects
Medicine ,Science - Abstract
Abstract Due to the lack of sufficient labeled data for the prostate and the extensive and complex semantic information in ultrasound images, accurately and quickly segmenting the prostate in transrectal ultrasound (TRUS) images remains a challenging task. In this context, this paper proposes a solution for TRUS image segmentation using an end-to-end bidirectional semantic constraint method, namely the BiSeC model. The experimental results show that compared with classic or popular deep learning methods, this method has better segmentation performance, with the Dice Similarity Coefficient (DSC) of 96.74% and the Intersection over Union (IoU) of 93.71%. Our model achieves a good balance between actual boundaries and noise areas, reducing costs while ensuring the accuracy and speed of segmentation.
- Published
- 2024
- Full Text
- View/download PDF