1. Neural Graph Pattern Machine
- Author
-
Wang, Zehong, Zhang, Zheyuan, Ma, Tianyi, Chawla, Nitesh V, Zhang, Chuxu, and Ye, Yanfang
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Social and Information Networks - Abstract
Graph learning tasks require models to comprehend essential substructure patterns relevant to downstream tasks, such as triadic closures in social networks and benzene rings in molecular graphs. Due to the non-Euclidean nature of graphs, existing graph neural networks (GNNs) rely on message passing to iteratively aggregate information from local neighborhoods. Despite their empirical success, message passing struggles to identify fundamental substructures, such as triangles, limiting its expressiveness. To overcome this limitation, we propose the Neural Graph Pattern Machine (GPM), a framework designed to learn directly from graph patterns. GPM efficiently extracts and encodes substructures while identifying the most relevant ones for downstream tasks. We also demonstrate that GPM offers superior expressivity and improved long-range information modeling compared to message passing. Empirical evaluations on node classification, link prediction, graph classification, and regression show the superiority of GPM over state-of-the-art baselines. Further analysis reveals its desirable out-of-distribution robustness, scalability, and interpretability. We consider GPM to be a step toward going beyond message passing.
- Published
- 2025