1. Optical vortex-antivortex crystallization in free space
- Author
-
Haolin Lin, Yixuan Liao, Guohua Liu, Jianbin Ren, Zhen Li, Zhenqiang Chen, Boris A. Malomed, and Shenhe Fu
- Subjects
Science - Abstract
Abstract Stable vortex lattices are basic dynamical patterns which have been demonstrated in physical systems including superconductor physics, Bose-Einstein condensates, hydrodynamics and optics. Vortex-antivortex (VAV) ensembles can be produced, self-organizing into the respective polar lattices. However, these structures are in general highly unstable due to the strong VAV attraction. Here, we demonstrate that multiple optical VAV clusters nested in the propagating coherent field can crystallize into patterns which preserve their lattice structures over distance up to several Rayleigh lengths. To explain this phenomenon, we present a model for effective interactions between the vortices and antivortices at different lattice sites. The observed VAV crystallization is a consequence of the globally balanced VAV couplings. As the crystallization does not require the presence of nonlinearities and appears in free space, it may find applications to high-capacity optical communications and multiparticle manipulations. Our findings suggest possibilities for constructing VAV complexes through the orbit-orbit couplings, which differs from the extensively studied spin-orbit couplings.
- Published
- 2024
- Full Text
- View/download PDF