1. Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli
- Author
-
Li Zhou, Ying Zhu, Zhongzhe Yuan, Guangqing Liu, Zijin Sun, Shiyu Du, He Liu, Yating Li, Haili Liu, and Zhemin Zhou
- Subjects
Ecology ,Butanols ,NAD ,Keto Acids ,Applied Microbiology and Biotechnology ,Acetolactate Synthase ,Glucose ,Hemiterpenes ,Metabolic Engineering ,Escherichia coli ,Pyruvates ,NADP ,Food Science ,Biotechnology - Abstract
As an important metabolic intermediate, 2-ketoisovalerate has significant potential in the pharmaceutical and biofuel industries. However, a low output through microbial fermentation inhibits its industrial application. The microbial production of 2-ketoisovalerate is representative whereby redox imbalance is generated with two molecules of NADH accumulated and an extra NADPH required to produce one 2-ketoisovalerate from glucose. To achieve efficient 2-ketoisovalerate production, metabolic engineering strategies were evaluated in Escherichia coli. After deleting the competing routes, overexpressing the key enzymes for 2-ketoisovalerate production, tuning the supply of NADPH, and recycling the excess NADH through enhancing aerobic respiration, a 2-ketoisovalerate titer and yield of 46.4 g/L and 0.644 mol/mol glucose, respectively, were achieved. To reduce the main by-product of isobutanol, the activity and expression of acetolactate synthase were modified. Additionally, a protein degradation tag was fused to pyruvate dehydrogenase (PDH) to curtail the conversion of pyruvate precursor into acetyl-CoA and the generation of NADH. The resulting strain, 050TY/pCTSDTQ487S-RBS55, was initially incubated under aerobic conditions to attain sufficient cell mass and then transferred to a microaerobic condition to degrade PDH and inhibit the remaining activity of PDH. Intracellular redox imbalance was relieved with titer, productivity and yield of 2-ketoisovalerate improved to 55.8 g/L, 2.14 g/L h and 0.852 mol/mol glucose. These results revealed metabolic engineering strategies for the production of a redox-imbalanced fermentative metabolite with high titer, productivity, and yield.
- Published
- 2022