1. Second order nonlinearity induced multipartite entanglement in a hybrid magnon cavity QED system
- Author
-
Zhou, Y., Xie, S. Y., Zhu, C. J., and Yang, Y. P.
- Subjects
Quantum Physics - Abstract
We present a proposal to produce bipartite and tripartite entanglement in a hybrid magnon-cavity QED system. Two macroscopic yttrium iron garnet (YIG) spheres are coupled to a single-mode microwave cavity via magnetic dipole interaction, while the cavity photons are generated via the two photon process induced by a pump field. Using the mean field theory, we show that the second order nonlinearity can result in strong bipartite entanglement between cavity photons and magnonic modes under two conditions, i.e., $\delta_c \delta_{m}=2g^2$ and $\delta_c=-\delta_{m}$. For the later one, we also show the possibility for producing the bipartite entanglement between two magnonic modes and tripartite entanglement among the cavity photons and two magnonic modes. Combining these two conditions, we further derive a third condition, i.e., $\delta_m^2-\phi^2+2g^2=0$, where the tripartite entanglement can be achieved when two magnonic modes have different resonant frequencies.
- Published
- 2022
- Full Text
- View/download PDF