22 results on '"Zuin S"'
Search Results
2. Shared human-agv industrial environments: Overview of the literature evolution and future research
- Author
-
Zuin, S., Battini, D., and Persona, A.
- Subjects
Literature review ,Automated Guided Vehicle ,Human factor ,Shared environment ,Safety - Published
- 2020
3. State of the art on design and management of material handling systems
- Author
-
Zuin, S., Sgarbossa, F., Calzavara, M., and Persona, A.
- Published
- 2018
4. Changes in liver stiffness assessment in chronic hepatitis C patients treated with direct-acting antivirals: monocentric experience between 2015 and 2016
- Author
-
Barbaro, F., primary, Cavinato, S., additional, Erne, E.M., additional, Zuin, S., additional, and Cattelan, A., additional
- Published
- 2017
- Full Text
- View/download PDF
5. Experience on material implication computing with an electromechanical memristor emulator
- Author
-
Zuin, S., primary, Escudero-Lopez, M., additional, Moll, F., additional, Rubio, A., additional, Vourkas, I., additional, and Sirakoulis, G. Ch., additional
- Published
- 2016
- Full Text
- View/download PDF
6. Environmental fate and effect of engineered nanoparticles: state of the art and research need for risk assessment
- Author
-
Zuin, S., Gottardo, S., Pojana, Giulio, Critto, Andrea, Tran, L., and Marcomini, Antonio
- Subjects
ecotoxicity ,nanoparticles ,characterization ,environment ,environmental risk - Published
- 2011
7. THU-283 - Changes in liver stiffness assessment in chronic hepatitis C patients treated with direct-acting antivirals: monocentric experience between 2015 and 2016
- Author
-
Barbaro, F., Cavinato, S., Erne, E.M., Zuin, S., and Cattelan, A.
- Published
- 2017
- Full Text
- View/download PDF
8. Contamination of nanoparticles by endotoxin: evaluation of different test methods
- Author
-
Smulders Stijn, Kaiser Jean-Pierre, Zuin Stefano, Van Landuyt Kirsten L, Golanski Luana, Vanoirbeek Jeroen, Wick Peter, and Hoet Peter HM
- Subjects
Endotoxin ,Nanoparticles ,LAL assay ,TLR4 reporter cells ,Toxicology. Poisons ,RA1190-1270 ,Industrial hygiene. Industrial welfare ,HD7260-7780.8 - Abstract
Abstract Background Nanomaterials can be contaminated with endotoxin (lipopolysaccharides, LPS) during production or handling. In this study, we searched for a convenient in vitro method to evaluate endotoxin contamination in nanoparticle samples. We assessed the reliability of the commonly used limulus amebocyte lysate (LAL) assay and an alternative method based on toll-like receptor (TLR) 4 reporter cells when applied with particles (TiO2, Ag, CaCO3 and SiO2), or after extraction of the endotoxin as described in the ISO norm 29701. Results Our results indicate that the gel clot LAL assay is easily disturbed in the presence of nanoparticles; and that the endotoxin extraction protocol is not suitable at high particle concentrations. The chromogenic-based LAL endotoxin detection systems (chromogenic LAL assay and Endosafe-PTS), and the TLR4 reporter cells were not significantly perturbed. Conclusion We demonstrated that nanoparticles can interfere with endotoxin detection systems indicating that a convenient test method must be chosen before assessing endotoxin contamination in nanoparticle samples.
- Published
- 2012
- Full Text
- View/download PDF
9. PANCREATIC DYSFUNCTION IN CHILDREN WITH SYMPTOMATIC HIV INFECTION
- Author
-
A Bavusotto, Maria Immacolata Spagnuolo, Giuseppe Montalto, Massimo Fontana, Canani R. Berni, Alfredo Guarino, Antonio Carroccio, Giovanna Zuin, F. Buffardi, Spagnuolo, M. I., Carroccio, S., Fontana, S., Zuin, S., Bavusotto, S., Montalto, S., Buffardi, S., Berni, C., and Guarino, A.
- Subjects
medicine.medical_specialty ,business.industry ,Internal medicine ,Pediatrics, Perinatology and Child Health ,Gastroenterology ,Human immunodeficiency virus (HIV) ,medicine ,medicine.disease_cause ,business ,Virology - Published
- 1997
- Full Text
- View/download PDF
10. Mucopolysaccharidosis type VII diagnosed from a peripheral blood smear.
- Author
-
Pelloso M, Zuin S, Tosato F, Zuin J, Fogar P, Piva E, Burlina A, and Plebani M
- Subjects
- Abnormalities, Multiple genetics, Adolescent, Cytoplasmic Granules chemistry, Delayed Diagnosis, Female, Flow Cytometry, Glycosaminoglycans urine, Humans, Mucopolysaccharidosis VII diagnosis, Mucopolysaccharidosis VII epidemiology, Mucopolysaccharidosis VII genetics, Psychomotor Disorders genetics, Staining and Labeling, Basophils ultrastructure, Cytoplasmic Granules ultrastructure, Eosinophils ultrastructure, Mucopolysaccharidosis VII blood
- Published
- 2021
- Full Text
- View/download PDF
11. Analytical and clinical performances of five immunoassays for the detection of SARS-CoV-2 antibodies in comparison with neutralization activity.
- Author
-
Padoan A, Bonfante F, Pagliari M, Bortolami A, Negrini D, Zuin S, Bozzato D, Cosma C, Sciacovelli L, and Plebani M
- Subjects
- Adult, Aged, Aged, 80 and over, Female, Humans, Male, Middle Aged, Antibodies, Neutralizing blood, Antibodies, Neutralizing immunology, Antibodies, Viral blood, Antibodies, Viral immunology, COVID-19 blood, COVID-19 immunology, COVID-19 Serological Testing, SARS-CoV-2 immunology, SARS-CoV-2 metabolism
- Abstract
Background: Reliable high-throughput serological assays for SARS-CoV-2 antibodies are urgently needed for the effective containment of the COVID-19 pandemic, as it is of crucial importance to understand the strength and duration of immunity after infection, and to make informed decisions concerning the activation or discontinuation of physical distancing restrictions., Methods: In 184 serum samples from 130 COVID-19 patients and 54 SARS-CoV-2 negative subjects, the analytical and clinical performances of four commercially available chemiluminescent assays (Abbott SARS-Cov-2 IgG, Roche Elecsys anti-SARS-CoV-2, Ortho SARS-CoV-2 total and IgG) and one enzyme-linked immunosorbent assay (Diesse ENZY-WELL SARS-CoV-2 IgG) were evaluated and compared with the neutralization activity achieved using the plaque reduction neutralization test (PRNT)., Findings: Precision results ranged from 0.9% to 11.8% for all assays. Elecsys anti-SARS-CoV-2 demonstrated linearity of results at concentrations within the cut-off value. Overall, sensitivity ranged from 78.5 to 87.7%, and specificity, from 97.6 to 100%. On limiting the analysis to samples collected 12 days after onset of symptoms, the sensitivity of all assays increased, the highest value (95.2%) being obtained with VITRO Anti-SARS-CoV-2 Total and Architect SARS-CoV-2 IgG. The strongest PRNT
50 correlation with antibody levels was obtained with ENZY-Well SARS-CoV-2 IgG (R2 adj = 0.569)., Interpretation: The results confirmed that all immunoassays had an excellent specificity, whereas sensitivity varied across immunoassays, depending strongly on the time interval between symptoms onset and sample collection. Further studies should be conducted to achieve a stronger correlation between antibody measurement and PRNT50 in order to obtain useful information for providing a better management of COVID-19 patients, effective passive antibody therapy, and developing a vaccine against the SARS-CoV-2 virus., Funding: None., (Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
12. Clinical performances of an ELISA for SARS-CoV-2 antibody assay and correlation with neutralization activity.
- Author
-
Padoan A, Zuin S, Cosma C, Basso D, Plebani M, and Bonfante F
- Subjects
- COVID-19, Coronavirus Infections diagnosis, Enzyme-Linked Immunosorbent Assay methods, Enzyme-Linked Immunosorbent Assay standards, Humans, Neutralization Tests methods, Pandemics, Pneumonia, Viral diagnosis, SARS-CoV-2, Time Factors, Antibodies, Neutralizing blood, Antibodies, Viral blood, Betacoronavirus isolation & purification, Coronavirus Infections blood, Neutralization Tests standards, Pneumonia, Viral blood
- Abstract
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- Published
- 2020
- Full Text
- View/download PDF
13. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study.
- Author
-
Padoan A, Sciacovelli L, Basso D, Negrini D, Zuin S, Cosma C, Faggian D, Matricardi P, and Plebani M
- Subjects
- Adult, Aged, Aged, 80 and over, COVID-19, Female, Humans, Longitudinal Studies, Luminescent Measurements methods, Male, Middle Aged, Pandemics, Real-Time Polymerase Chain Reaction methods, SARS-CoV-2, Young Adult, Antibodies, Viral blood, Betacoronavirus isolation & purification, Coronavirus Infections blood, Coronavirus Infections diagnosis, Glycoproteins blood, Immunoglobulin A blood, Pneumonia, Viral blood, Pneumonia, Viral diagnosis
- Abstract
Validation studies of serological antibody tests must be properly designed for clinical, epidemiological and Public Health objectives such as confirmation of suspected COVID-19 cases, certification of seroconversion after infection, and epidemiological surveillance. We evaluated the kinetics of IgM, IgA and IgG SARS-CoV-2 antibodies in COVID-19 patients with confirmed (rRT-PCR) infection. We found that the IgA response appears and grows early, peaks at week 3, and it is stronger and more persistent than the IgM response. Further longitudinal investigations of virus-specific antibodies functions and of their protective efficacy over time are needed., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
14. Characterization of materials released into water from paint containing nano-SiO2.
- Author
-
Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S, Arroyo Y, Golanski L, and Nowack B
- Subjects
- Nanostructures chemistry, Silicon Dioxide chemistry, Water Pollutants, Chemical chemistry, Nanostructures analysis, Paint radiation effects, Silicon Dioxide analysis, Ultraviolet Rays, Water chemistry, Water Pollutants, Chemical analysis
- Abstract
In order to assess the possible risks of applications containing engineered nanomaterials, it is essential to generate more data about their release and exposure, so far largely overlooked areas of research. The aim of this work was to study the characterization of the materials released from paint containing nano-SiO2 during weathering and exposure to water. Panels coated with nano-SiO2 containing paint and a nano-free reference paint were exposed to accelerated weathering cycles in a climate chamber. The total release of 89 six-hour cycles of UV-illumination and precipitation was 2.3% of the total SiO2 contained in the paint. Additional tests with powdered and aged paint showed that the majority of the released Si was present in dissolved form and that only a small percentage was present in particulate and nano-particulate form. TEM imaging of the leachates indicated that the majority of the particulate Si was contained in composites together with Ca, representing the paint matrix, and only few single dispersed SiO2-NPs were detected. The results suggest that toxicological and ecotoxicological studies need to consider that the released particles may have been transformed or are embedded in a matrix., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
15. Behavior of TiO₂ nanoparticles during incineration of solid paint waste: a lab-scale test.
- Author
-
Massari A, Beggio M, Hreglich S, Marin R, and Zuin S
- Subjects
- Glass chemistry, Hazardous Waste analysis, Incineration, Nanoparticles chemistry, Paint analysis, Solid Waste analysis, Titanium chemistry
- Abstract
In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products' life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products. In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950°C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste., (Copyright © 2014 Elsevier Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
16. Behavior of TiO(2) released from Nano-TiO(2)-containing paint and comparison to pristine Nano-TiO(2).
- Author
-
Al-Kattan A, Wichser A, Zuin S, Arroyo Y, Golanski L, Ulrich A, and Nowack B
- Subjects
- Humans, Light, Nanoparticles ultrastructure, Particle Size, Particulate Matter analysis, Powders, Scattering, Radiation, Static Electricity, Water chemistry, Nanoparticles chemistry, Paint analysis, Titanium chemistry
- Abstract
In the assessment of the fate and effects of engineered nanomaterials (ENM), the current focus is on studying the pristine, unaltered materials. However, ENM are incorporated into products and are released over the whole product life cycle, though mainly during the use and disposal phases. So far, released ENMs have only been characterized to a limited extent and almost nothing is known about the behavior of these materials under natural conditions. In this work we obtained material that was released from aged paint containing nano-TiO2, characterized the particulate materials, and studied their colloidal stability in media with different pH and ionic composition. A stable suspension was obtained from aged paint powder by gentle shaking in water, producing a dilute suspension of 580 μg/L TiO2 with an average particle size of 200-300 nm. Most particles in this suspension were small pieces of paint matrix that also contained nano-TiO2. Some free nano-TiO2 particles were observed by electron microscopy, but the majority was enclosed by the organic paint binder. The pristine nano-TiO2 showed the expected colloidal behavior with increasing stability with increasing pH and strong agglomeration above the isoelectric point and settling in the presence of Ca. The released TiO2 showed very small variations in particle size, ζ potential, and colloidal stability, even in the presence of 3 mM Ca. The results show that the behavior of released ENM may not necessarily be predicted by studying the pristine materials. Additionally, effect studies need to focus more on the particles that are actually released as we can expect that the toxic effect will also be markedly different between pristine and product released materials.
- Published
- 2014
- Full Text
- View/download PDF
17. Formulation effects on the release of silica dioxide nanoparticles from paint debris to water.
- Author
-
Zuin S, Massari A, Ferrari A, and Golanski L
- Subjects
- Waste Products analysis, Water Pollutants, Chemical analysis, Nanoparticles chemistry, Paint analysis, Silicon Dioxide chemistry, Water Pollutants, Chemical chemistry
- Abstract
Waterborne paints with integrated nanoparticles have been recently introduced into the market as nanoparticles offer improved or novel functionalities to paints. However, the release of nanoparticles during the life cycle of nano-enhanced paint has only been studied to a very limited extent. The paint composition could determine in what quantities and forms the nanoparticles are released. In this work, paint formulations containing the same amount of silicon dioxide (SiO2) nanoparticles but differing in the pigment volume concentration (PVC) and in amount and type of binder and pigment, were studied through leaching test to investigate the influence of these parameters on release of Si from paint. The results indicate greater release of Si, about 1.7 wt.% of the SiO2 nanoparticles in the paint, for paint formulated with higher PVC value (63%), suggesting that the PVC is a crucial factor for release of SiO2 nanoparticles from paints. This hypothesis was also based on the fact that agglomerates of SiO2 nanoparticles were only found in leachates from paint with higher PVC. A paint sample with the higher amount of binder and less calcite filler exhibited a lower release of Si among the paints with a low PVC value (35%), and no SiO2 particles were detected in leachates collected from this paint. This could be due to the fact that a high portion of binder forms a suitable matrix to hold the SiO2 ENPs in paint. The paint sample in which the amount of calcite was partially substituted with TiO2 pigment did not show an important reduction on Si release. Our work suggests that paint debris containing SiO2 nanoparticles may release a limited amount of Si into the environment, and that by adjusting the properties of the binder in combination with common pigments it is possible to reduce the release of SiO2 nanoparticles., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
18. Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering.
- Author
-
Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S, and Nowack B
- Subjects
- Environment, Controlled, Microscopy, Electron, Scanning, Nanoparticles analysis, Paint, Titanium analysis, Water Pollutants, Chemical analysis
- Abstract
The release of nanomaterials from products and applications that are used by industry and consumers has only been studied to a very limited extent. The amount and the characteristics of the released particles determine the potential environmental exposure. In this work we investigated the release of Ti from paints containing pigment-TiO2 and nano-TiO2. Panels covered with paint with and without nano-TiO2 were exposed to simulated weathering by sunlight and rain in climate chambers. The same paints were also studied in small-scale leaching tests to elucidate the influence of various parameters on the release such as composition of water, type of support and UV-light. Under all conditions we only observed a very low release close to background values, less than 1.5 μg l(-1) in the climate chamber over 113 irrigations per drying cycle and between 0.5 and 14 μg l(-1) in the leaching tests, with the highest concentrations observed after prolonged UV-exposure. The actual release of Ti over the 113 weathering cycles was only 0.007% of the total Ti, indicating that TiO2 was strongly bound in the paint. Extraction of UV-exposed and then milled paint resulted in about 100-times larger release of Ti from the nano-TiO2 containing paint whereas the paint with only pigment-TiO2 did not show this increase. This indicated that the release of Ti from the paints is an effect of the addition of nano-TiO2, either by photocatalytic degradation of the organic paint matrix (observed by electron microscopic imaging of the paint surface) or by direct release of nano-TiO2. Our work suggests that paints containing nano-TiO2 may release only very limited amounts of materials into the environment, at least over the time-scales investigated in this work.
- Published
- 2013
- Full Text
- View/download PDF
19. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges.
- Author
-
Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, Semmler-Behnke M, McGuiness C, Balharry D, Marcomini A, Wallin H, Kreyling W, Donaldson K, Tran L, and Stone V
- Subjects
- Animals, Chemical Phenomena, Humans, Models, Animal, Nanostructures analysis, Nanotechnology methods, Risk Assessment, Toxicity Tests, Toxicology trends, Nanostructures toxicity, Nanotechnology trends, Toxicology methods
- Abstract
PARTICLE_RISK was one of the first multidisciplinary projects funded by the European Commission's Framework Programme that was responsible for evaluating the implications of nanomaterial (NM) exposure on human health. This project was the basis for this review which identifies the challenges that exist within the assessment of NM risk. We have retrospectively reflected on the findings of completed nanotoxicology studies to consider what progress and advances have been made within the risk assessment of NMs, as well as discussing the direction that nanotoxicology research is taking and identifying the limitations and failings of existing research. We have reflected on what commonly encountered challenges exist and explored how these issues may be resolved. In particular, the following is discussed (i) NM selection (ii) NM physico-chemical characterisation; (iii) NM dispersion; (iv) selection of relevant doses and concentrations; (v) identification of relevant models, target sites and endpoints; (vi) development of alternatives to animal testing; and (vii) NM risk assessment. These knowledge gaps are relatively well recognised by the scientific community and recommendations as to how they may be overcome in the future are provided. It is hoped that this will help develop better defined hypothesis driven research in the future that will enable comprehensive risk assessments to be conducted for NMs. Importantly, the nanotoxicology community has responded and adapted to advances in knowledge over recent years to improve the approaches used to assess NM hazard, exposure and risk. It is vital to learn from existing information provided by ongoing or completed studies to avoid unnecessary duplication of effort, and to offer guidance on aspects of the experimental design that should be carefully considered prior to the start of a new study.
- Published
- 2013
- Full Text
- View/download PDF
20. Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion.
- Author
-
Kaiser JP, Zuin S, and Wick P
- Subjects
- Chemical Industry standards, Disinfectants analysis, Environmental Pollution prevention & control, Lacquer microbiology, Lacquer standards, Nanostructures analysis, Chemical Industry methods, Disinfectants chemistry, Nanostructures chemistry, Nanotechnology methods, Paint microbiology, Paint standards
- Abstract
Many paints for indoor and outdoor applications contain biocides and additives for protection against microbial, physical and chemical deterioration. The biocides should remain active as long as they are incorporated in the paint. Protection against microbial colonization should last at least a decade. Once the biocides are released they should degrade within a short time so that no accumulation in the environment can occur. The paint industry is not only focusing their research in producing better paint formulations with degradable biocides: they also consider using nanomaterials, such as nanosilver, nanocopper, nanozinc oxide, photocatalytic-active nanotitanium dioxide and nanosilica dioxide as additives for the protection of paints, against microbial degradation and physical and chemical deterioration. In the future nanomaterials should replace biodegradable biocides and improve the paint properties as well as impede colonization by microorganisms. At the time there is no guarantee that the nanomaterials in paints and façades will fulfill their task in the long run, since there are no long term studies available. From nanosilver doped paints it is known that silver is easily washed out by rain. Photocatalytic active nanotitanium dioxide adsorbs ultra violet light (UV-light) and generates hydroxyl radicals, which not only inhibit microbial growth but can also initiate or accelerate the photocatalytic degradation of the paint matrix. Thus at this time it is still unknown if it makes sense to incorporate nanomaterials into paints. Intensive research and development are still needed in order to find the answers., (Copyright © 2012 Elsevier B.V. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
21. Weight of evidence approach for the relative hazard ranking of nanomaterials.
- Author
-
Zuin S, Micheletti C, Critto A, Pojana G, Johnston H, Stone V, Tran L, and Marcomini A
- Subjects
- Environmental Pollutants toxicity, Hazardous Substances, Humans, Research Design, Risk Factors, Fullerenes toxicity, Nanotubes, Carbon toxicity, Quantum Dots, Soot toxicity, Toxicology standards
- Abstract
In assessing hazard for human health posed by newly engineered nanomaterials (ENM), approaches such as Weight of Evidence (WOE) and expert judgment are required to develop conclusions about the hazard of ENM. This is because all factors affecting hazard are not currently well defined and are often subject to different interpretation. Here we report the application of a WOE procedure to assess the potential of ENM to cause harm for human health, by integrating and combining physicochemical properties of NM and toxicity data obtained within the EU-funded Particle Risk project. The procedure was applied to carbon black (CB), single-walled carbon nanotubes (SWNT), C60 fullerene and quantum dots (QD) ENM tested during the Particle Risk project. The results show that some of the investigated ENM present a relatively higher hazardousness level on the basis of the integration of their physicochemical properties and toxicological effects, and that their hazard may be ranked as follow: QD >> C60 > SWNT > CB. This case study shows the utility of WOE approach to obtain a hazard ranking of ENM.
- Published
- 2011
- Full Text
- View/download PDF
22. Life cycle assessment of ship-generated waste management of Luka Koper.
- Author
-
Zuin S, Belac E, and Marzi B
- Subjects
- Slovenia, Environment, Ships, Waste Management
- Abstract
Sea ports and the related maritime activities (e.g. shipping, shipbuilding, etc.) are one of the main driver of Europe's growth, jobs, competitiveness and prosperity. The continuously growth of shipping sectors has however introduced some environmental concerns, particularly with respect to ship-generated waste management. The port of Koper, one of the major ports on the northern Adriatic Coast, is the focus of this study. In this paper, a life cycle assessment was performed to identify and quantify the environmental impacts caused by the ship-generated waste management of port of Koper. Carcinogens substance (e.g. dioxins) and inorganic emissions, especially heavy metals, resulted to be the most critical environmental issues, while the fossil fuels consumption is reduced by recovery of ship-generated oils. Moreover, the final treatment of ship waste was found to be critical phase of the management, and the landfill have a significant contribute to the overall environmental load. These results can be useful in the identification of the best practices and in the implementation of waste management plans in ports.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.