1. 4D-foot analysis on effect of arch support on ankle, subtalar, and talonavicular joint kinematics.
- Author
-
Miyamoto, Takuma, Otake, Yoshito, Nakao, Satoko, Kurokawa, Hiroaki, Kosugi, Shinichi, Taniguchi, Akira, Soufi, Mazen, Sato, Yoshinobu, and Tanaka, Yasuhito
- Subjects
- *
ANKLE joint , *SUBTALAR joint , *ANKLE , *KINEMATICS , *HEEL bone - Abstract
It has been difficult to study the effects of arch support on multiple joints simultaneously. Herein, we evaluated foot and ankle kinematics using a fully automated analysis system, "4D-Foot," consisting of a biplane X-ray imager and two-dimensional‒three-dimensional registration, with automated image segmentation and landmark detection tools. We evaluated the effect of arch support on ankle, subtalar, and talonavicular joint kinematics in five healthy female volunteers without a clinical history of foot and ankle disorders. Computed tomography images of the foot and ankle and X-ray videos of walking barefoot and with arch support were acquired. A kinematic analysis using the "4D-Foot" system was performed. The ankle, subtalar, and talonavicular joint kinematics were quantified from heel-strike to foot-off, with and without arch support. For the ankle joint, significant differences were observed in dorsi/plantarflexion, inversion/eversion, and internal/external rotation in the late midstance phase. The dorsi/plantarflexion and inversion/eversion motions were smaller with arch support. For the subtalar joint, a significant difference was observed in all the dynamic motions in the heel-strike and late midstance phases. For the talonavicular joint, significant differences were observed in inversion/eversion and internal/external rotation in heel-strike and the late midstance phases. For the subtalar and talonavicular joints, the motion was larger with arch support. An extremely strong correlation was observed when the motion of the subtalar and talonavicular joints was compared for each condition and motion. The results indicated that the arch support decreased the ankle motion and increased the subtalar and talonavicular joint motions. Additionally, our study demonstrated that the in vivo subtalar and talonavicular joints revealed a strong correlation, suggesting that the navicular and calcaneal bones were moving similarly to the talus and that the arch support stabilizes the ankle joint and compensatively increases the subtalar and talonavicular joint motions. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF