1. Two-parameter modified matrix splitting iteration method for Helmholtz equation.
- Author
-
Li, Tian-Yi, Chen, Fang, Fang, Zhi-Wei, Sun, Hai-Wei, and Wang, Zhi
- Subjects
- *
LINEAR systems , *HELMHOLTZ equation - Abstract
For effectively solving the nonsymmetric and indefinite linear system originating from the discretized Helmholtz equation with complex wavenumber, we propose a two-parameter modified matrix splitting iteration method. We establish the asymptotic convergence theory for this method and demonstrate its convergence under certain conditions. The proposed iteration method leads to a new preconditioner that can be efficiently inverted by using the discrete sine transform. Numerical experiments are carried out to show that the new preconditioner significantly improves the convergence rate of the GMRES method, which results in effective preconditioned GMRES method for solving the Helmholtz equation of high wavenumber. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF