1. Manipulating Focal Sets on the Unit Simplex : Application to Plastic Sorting
- Author
-
Sébastien Destercke, François Trousset, Jacky Montmain, Lucie Jacquin, Didier Perrin, Abdelhak Imoussaten, Informatique, Image, Intelligence Artificielle (I3A), Laboratoire de Génie Informatique et d'Ingénierie de Production (LGI2P), IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Ingénierie des Systèmes et des Organisations pour les Activités à Risque (ISOAR), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Laboratoire des Sciences des Risques (LSR), and Polymères Composites et Hybrides (PCH - IMT Mines Alès)
- Subjects
inference ,Theoretical computer science ,Simplex ,Uncertain data ,belief function ,Computer science ,Sorting ,Inference ,02 engineering and technology ,continuous focal sets ,010501 environmental sciences ,01 natural sciences ,Range (mathematics) ,[SPI]Engineering Sciences [physics] ,Face (geometry) ,0202 electrical engineering, electronic engineering, information engineering ,Probability distribution ,020201 artificial intelligence & image processing ,plastic sorting ,Limit (mathematics) ,0105 earth and related environmental sciences - Abstract
International audience; Belief functions are quite generic models when it comes to represent uncertain data, as it extends a wide rangeof uncertainty models (possiblity and probability distributions, among others). Usually, belief functions are defined over finitespaces, however many real word problems require to deal with beliefs over a continuous space while maintaining computational efficiency. This paper discusses the case of focal sets on the unit simplex, and proposes efficient inference tools to manipulate them. Such sets can be used to represent unknown proportions that one may face in various fields like soil contamination managing, plastic sorting or image reconstruction. In this paper, we illustrate their use on an industrial problem of plastic sorting, where the proportion of material impurities must not go over a limit while minimizing the rejection of sorted materials, whose nature is uncertain.
- Published
- 2020
- Full Text
- View/download PDF