1. Local fading accelerator and the origin of TeV cosmic ray electrons
- Author
-
Jacco Vink, Stefano Gabici, S. Recchia, Felix Aharonian, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
electron: energy ,lepton: energy ,Inverse ,Astrophysics ,Electron ,GeV ,01 natural sciences ,cosmic radiation: TeV ,Luminosity ,Positron ,Diffusion (business) ,attenuation ,pulsar ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,education.field_of_study ,energy: high ,cosmic radiation: spectrum ,Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) ,shock waves ,electron: spectrum ,Supernova ,positron ,Production (computer science) ,Astrophysics - High Energy Astrophysical Phenomena ,Particle physics ,accelerator ,Astrophysics::High Energy Astrophysical Phenomena ,energy loss ,Population ,FOS: Physical sciences ,Cosmic ray ,cosmic radiation: diffusion ,energy dependence ,Pulsar ,0103 physical sciences ,supernova ,synchrotron ,positron: acceleration ,Fading ,010306 general physics ,education ,010308 nuclear & particles physics ,particle: energy ,electron: cosmic radiation ,acceleration ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,injection ,Compton scattering: inverse ,13. Climate action ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Energy (signal processing) ,Astrophysics and astroparticle physics - Abstract
The cosmic ray electron spectrum exhibits a break at a particle energy of $\ensuremath{\sim}1\text{ }\text{ }\mathrm{TeV}$ and extends without any attenuation up to $\ensuremath{\sim}20\text{ }\text{ }\mathrm{TeV}$. Synchrotron and inverse Compton energy losses strongly constrain the time of emission of $\ensuremath{\sim}20\text{ }\text{ }\mathrm{TeV}$ electrons to $\ensuremath{\approx}2\ifmmode\times\else\texttimes\fi{}{10}^{4}\text{ }\text{ }\mathrm{yr}$ and the distance of the potential source(s) to $\ensuremath{\approx}100--500\text{ }\text{ }\mathrm{pc}$, depending on the cosmic ray diffusion coefficient. This suggests that maybe one nearby discrete source may explain the observed spectrum of high energy electrons. Given the strong energy dependence ($\ensuremath{\propto}1/E$) of the cooling time of TeV electrons, the spectral shape of the electron spectrum above the $\ensuremath{\sim}1\text{ }\text{ }\mathrm{TeV}$ break strongly depends on the history of injection of these electrons from the source. In this paper we show that a local, continuous (on timescales of $\ensuremath{\sim}{10}^{5}\text{ }\text{ }\mathrm{yr}$) but fading electron accelerator, with a characteristic decay time of $\ensuremath{\sim}{10}^{4}\text{ }\text{ }\mathrm{yr}$, can naturally account for the entire spectrum of cosmic ray electrons in the TeV domain. Although the standard ``nearby pulsar'' scenario naturally meets this time condition, it is (almost) excluded by recent measurements of the positron fraction, which above $\ensuremath{\sim}100\text{ }\text{ }\mathrm{GeV}$ saturates at a level well below 0.5 and drops above $\ensuremath{\sim}400--500\text{ }\text{ }\mathrm{GeV}$. The second potential source population, the supernova remnants, accelerate mostly electrons, rather than positrons. However, they hardly can provide an effective production of multi-TeV electrons via the standard diffusive shock acceleration scenario for $\ensuremath{\sim}{10}^{5}\text{ }\text{ }\mathrm{yr}$. A third possibility are stellar wind shocks, which however are likely to be continuous with nearly constant luminosity on timescales $\ensuremath{\gg}10\text{ }\text{ }\mathrm{kyr}$ and probably cannot match the time requirement of our potential source. Therefore, we face a real challenge in the identification of the origin of the source of multi-TeV electrons. Thus, the link of this source with known particle accelerators would require a dramatic revision of the standard paradigms of acceleration and escape in such objects.
- Published
- 2019
- Full Text
- View/download PDF