63 results on '"cosmic shear"'
Search Results
2. Ellipsoidal Universe and Cosmic Shear
- Author
-
Luigi Tedesco
- Subjects
anisotropy ,Bianchi I ,cosmic shear ,Elementary particle physics ,QC793-793.5 - Abstract
We consider a Bianchi I geometry of the universe. We obtain a cosmic shear expression related to the eccentricity of the universe. In particular, we study the connections among cosmic shear, eccentricity, and CMB. The equations are self-contained, with only two parameters.
- Published
- 2024
- Full Text
- View/download PDF
3. Geometric Outlines of the Gravitational Lensing and Its Astronomic Applications.
- Author
-
Shen, Bin and Yu, Mingyang
- Subjects
- *
GRAVITATIONAL lenses , *SCHWARZSCHILD black holes , *DARK energy , *GEODETIC astronomy , *DARK matter , *ASTRONOMICAL instruments , *RELATIVISTIC astrophysics - Abstract
Gravitational lensing is a topic of great application value in the field of astronomy. The properties and research methods of gravitational lensing are closely related to the geometric and relativistic characteristics of the background universe. This review focuses on the theoretical research and application of strong lenses and weak lenses. We first introduce the basic principles of gravitational lensing, focusing on the geometric basis of geometric lensing, the representation of deflection angles, and the curvature relationship in different geometric spaces. In addition, we summarize the wide range of applications of gravitational lensing, including the application of strong gravitational lensing in Schwarzschild black holes, time delay, the cosmic shearing based on weak lensing, the applications in signal extraction, dark matter, and dark energy. In astronomy, through the use of advanced astronomical instruments and computers, analyzing gravitational lensing effects to understand the structure of galaxies in the universe is an important topic at present. It is foreseeable that gravitational lensing will continue to play an important role in the study of cosmology and will enrich our understanding of the universe. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. B-modes from galaxy cluster alignments in future surveys
- Author
-
Georgiou, Christos, Bakx, Thomas, Donkersgoed, Juliard van, Chisari, Nora Elisa, Georgiou, Christos, Bakx, Thomas, Donkersgoed, Juliard van, and Chisari, Nora Elisa
- Abstract
Intrinsic alignment (IA) of source galaxies represents an important contaminant for upcoming cosmic shear surveys. In particular, it is expected on general grounds that IA contains a B-mode while the weak lensing signal does not. Thus, a detection of B-modes offers the possibility to study directly the IA signal of the sources. Galaxy clusters exhibit strong IA and are therefore a natural candidate to look for a B-mode signal. We forecast the signal-to-noise ratio (SNR) for B-modes from IA of galaxy clusters in the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). We use a perturbative model for the IA multipoles based on the Effective Field Theory of Intrinsic Alignments (EFT of IA), which has recently been validated against N-body simulations. We forecast SNR $\approx 12$ and find that this detectability is not significantly impacted by different analysis choices. Lastly, we also apply our forecast to clusters in the redMaPPer SDSS and DESY1 samples. We find SNR $\approx 5$ and SNR $\approx 3$, respectively, suggesting a detection is within reach, provided accurate redshift information is available.
- Published
- 2024
5. Systematic biases in weak lensing cosmology with the Dark Energy Survey
- Author
-
Samuroff, Simon, Brown, Michael, and Bridle, Sarah
- Subjects
500 ,Galaxy Shape Measurement ,Cosmology ,Weak Lensing ,Cosmic Shear - Abstract
This thesis presents a practical guide to applying shear measurements as a cosmological tool. We first present one of two science-ready galaxy shape catalogues from Year 1 of the Dark Energy Survey (DES Y1), which covers 1500 square degrees in four bands griz, with a median redshift of 0.59. We describe the shape measurement process implemented by the DES Y1 im3shape catalogue, which contains 21.9M high-quality r-band bulge/disc fits. In Chapter 3 a new suite of image simulations, referred to as hoopoe, are presented. The hoopoe dataset is tailored to DES Y1 and includes realistic blending, spatial masks and variation in the point spread function. We derive shear corrections, which we show are robust to changes in calibration method, galaxy binning and variance within the simulated dataset. Sources of systematic uncertainty in the simulation-based shear calibration are discussed, leading to a final estimate of the 1 sigma uncertainties in the residual multiplicative bias after calibration of 0.025. Chapter 4 describes an extension of the analysis on the hoopoe simulations into a detailed investigation of the impact of galaxy neighbours on shape measurement and shear cosmology. Four mechanisms by which neighbours can have a non-negligible influence on shear measurement are identified. These effects, if ignored, would contribute a net multiplicative bias of m ~ 0.03 - 0.09 in DES Y1, though the precise impact will depend on both the measurement code and the selection cuts applied. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude S8 = sigma_8 (Omega_m /0.3)^0.5 by 1.5 sigma towards low values. Finally, we use the hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the cosmological impact to be subdominant to statistical error at the current level of precision. Another major uncertainty in shear cosmology is the accuracy of our ensemble redshift distributions. Chapter 5 presents a numerical investigation into the combined constraining power of cosmic shear, galaxy clustering and their cross-correlation in DES Y1, and the potential for internal calibration of redshift errors. Introducing a moderate uniform bias into the redshift distributions used to model the weak lensing (WL) galaxies is shown to produce a > 2 sigma bias in S8. We demonstrate that this cosmological bias can be eliminated by marginalising over redshift error nuisance parameters. Strikingly, the cosmological constraint of the combined dataset is largely undiminished by the loss of prior information on the WL distributions. We demonstrate that this implicit self-calibration is the result of complementary degeneracy directions in the combined data. In Chapter 6 we present the preliminary results of an investigation into galaxy intrinsic alignments. Using the DES Y1 data, we show a clear dependence in alignment amplitude on galaxy type, in agreement with previous results. We subject these findings to a series of initial robustness tests. We conclude with a short overview of the work presented, and discuss prospects for the future.
- Published
- 2017
6. Weak gravitational lensing studies using radio information
- Author
-
Demetroullas, Constantinos and Jackson, Neal
- Subjects
523.1 ,Cosmic Shear ,Telescope Systematics ,Cross Correlation ,Weak Gravitational Lensing ,Cosmological Parameters - Abstract
Weak gravitational lensing has developed to be one of the most powerful tools for studying the (dark) matter distribution in the Universe. Most weak lensing studies thus far were con- ducted in the optical and near infrared. Measuring weak lensing in the radio though, provided it is feasible, can be very advantageous. One can exploit the well known and deterministic beam pattern of a radio telescope and the polarisation information in radio data to reduce shape biases and intrinsic alignment effects respectively. Combining the information from an optical and a radio survey can also help remove systematics from both datasets. This has motivated this study that uses archival radio and optical data to treat telescope systematics and measure an unbiased weak lensing signal using shape information derived from radio observations. Using simulations I have shown that an unbiased convergence cross power spectrum can be measured in the presence of the large scale (θ > 1◦) systematics detected in FIRST and SDSS. The method however amplifies the uncertainties by a factor ∼2.5 compared to the errors due to cosmic variance and noise due to galaxy intrinsic shape alone. Using the shape information from the two surveys I measure a Ckappakappa spectrum signal that is inconsistent with zero at the 2.7sigma. The placed constraints are consistent with the expected signal in the concordance cosmological model assuming recent estimates of the cosmological parameters from the Planck satellite and literature values for the median redshifts of SDSS and FIRST.Through simulations I also show that I can successfully remove position based small scale systematics (θ5). Using the deconvolved information for the resolved sources I calculate a FWHM median size and flux density of 0.5'' and 300μJy respectively. Comparing the source number density and RMS noise of the study with those of FIRST, I extrapolate to predict that the number density of sources at > 5sigma will be ∼5arcmin-2, assuming the target noise threshold for the survey is reached.
- Published
- 2016
7. Performance of internal covariance estimators for cosmic shear correlation functions
- Author
-
Gruen, D. [Univ. Observatory Munich, Munich (Germany); Max Planck Institute for Extraterrestrial Physics, Garching (Germany)]
- Published
- 2015
- Full Text
- View/download PDF
8. Weak Lensing
- Author
-
Saga, Shohei and Saga, Shohei
- Published
- 2018
- Full Text
- View/download PDF
9. Source Distributions of Cosmic Shear Surveys in Efficiency Space
- Author
-
Nicolas Tessore and Ian Harrison
- Subjects
cosmology ,cosmic shear surveys ,photometric redshifts ,gravitational lensing ,cosmic shear ,Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
We show that the lensing efficiency of cosmic shear generically has a simple shape, even in the case of a tomographic survey with badly behaved photometric redshifts. We argue that source distributions for cosmic shear can therefore be more effectively parametrised in “efficiency space”. Using realistic simulations, we find that the true lensing efficiency of a current cosmic shear survey without disconnected outliers in the redshift distributions can be described to per cent accuracy with only two parameters, and the approach straightforwardly generalises to other parametric forms and surveys. The cosmic shear signal is thus largely insensitive to the details of the source distributions, and the features that matter can be summarised by a small number of suitable efficiency parameters. For the simulated survey, we show that prior knowledge at the ten per cent level, which is attainable e.g. from photometric redshifts, is enough to marginalise over the efficiency parameters without severely affecting the constraints on the cosmology parameters Ωm and σ8.
- Published
- 2020
- Full Text
- View/download PDF
10. Sheer shear: weak lensing with one mode
- Author
-
Emilio Bellini, Ludovic van Waerbeke, Shahab Joudaki, and David Alonso
- Subjects
data comrpession ,karhunen–loève expansion ,weak gravitational lensing ,cosmic shear ,large-scale structure of the universe ,cosmology ,Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
3D data compression techniques can be used to determine the natural basis of radial eigenmodes that encode the maximum amount of information in a tomographic large-scale structure survey. We explore the potential of the Karhunen-Loève decomposition in reducing the dimensionality of the data vector for cosmic shear measurements, and apply it to the final data from the CFHTLenS survey. We find that practically all of the cosmological information can be encoded in one single radial eigenmode, from which we are able to reproduce compatible constraints with those found in the fiducial tomographic analysis (done with 7 redshift bins) with a factor of ~30 fewer datapoints. This simplifies the problem of computing the two-point function covariance matrix from mock catalogues by the same factor, or by a factor of ~800 for an analytical covariance. The resulting set of radial eigenfunctions is close to l-independent, and therefore they can be used as redshift-dependent galaxy weights. This simplifies the application of the Karhunen-Loève decomposition to real-space and Fourier-space data, and allows one to explore the effective radial window function of the principal eigenmodes as well as the associated shear maps in order to identify potential systematics. We also apply the method to extended parameter spaces and verify that additional information may be gained by including a second mode to break parameter degeneracies. The data and analysis code are publicly available at https://github.com/emiliobellini/kl_sample.
- Published
- 2019
- Full Text
- View/download PDF
11. Propagating Residual Biases in Cosmic Shear Power Spectra
- Author
-
Thomas D. Kitching, Paniez Paykari, Henk Hoekstra, and Mark Cropper
- Subjects
bias ,power spectrum ,multipole expansion ,cosmology ,weak gravitational lensing ,large-scale structure of the universe ,cosmic shear ,Astronomy ,QB1-991 ,Astrophysics ,QB460-466 - Abstract
In this paper we derive a full expression for the propagation of multiplicative and additive shape measurement biases into the cosmic shear power spectrum. In doing so we identify several new terms that are associated with selection effects, as well as cross-correlation terms between the multiplicative and additive biases and the shear field. The computation of the resulting bias in the shear power spectrum scales as the fifth power of the maximum multipole considered. Consequently the calculation is unfeasible for large l-modes, and the only tractable way to assess the full impact of shape measurement biases on cosmic shear power spectrum is through forward modelling of the effects. To linear order in bias parameters the shear power spectrum is only affected by the mean of the multiplicative bias field over a survey and the cross correlation between the additive bias field and the shear field. If the mean multiplicative bias is zero then second order convolutive terms are expected to be orders of magnitude smaller.
- Published
- 2019
- Full Text
- View/download PDF
12. Potential scientific synergies in weak lensing studies between the CSST and Euclid space probes
- Author
-
D. Z. Liu, X. M. Meng, X. Z. Er, Z. H. Fan, M. Kilbinger, G. L. Li, R. Li, T. Schrabback, D. Scognamiglio, H. Y. Shan, C. Tao, Y. S. Ting, J. Zhang, S. H. Cheng, S. Farrens, L. P. Fu, H. Hildebrandt, X. Kang, J. P. Kneib, X. K. Liu, Y. Mellier, R. Nakajima, P. Schneider, J. L. Starck, C. L. Wei, A. H. Wright, H. Zhan, HEP, INSPIRE, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
large-scale structure of universe ,photometric redshifts ,spectroscopy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,hyper suprime-cam ,gravitational lensing ,FOS: Physical sciences ,weak ,Astronomy and Astrophysics ,telescopes ,telescope ,dark matter ,gravitational lensing: weak ,surveys ,Space and Planetary Science ,cfhtlens ,galaxy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,dark energy ,constraints ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,cosmology ,dark energy survey ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Aims. With the next generation of large surveys poised to join the ranks of observational cosmology in the near future, it is important to explore their potential synergies and to maximize their scientific outcomes. In this study, we aim to investigate the complementarity of two upcoming space missions: Euclid and the China Space Station Telescope (CSST), both of which will be focused on weak gravitational lensing for cosmology. In particular, we analyze the photometric redshift (photo-z) measurements by combining NUV, 2006;gy bands from CSST with the VIS, Y,2006;J,2006;H bands from Euclid, and other optical bands from the ground-based Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) and Dark Energy Survey. We also consider the advantages of combining the two space observational data in simplifying image deblending. For Euclid, weak lensing measurements use the broad optical wavelength range of 550-900 nm, for which chromatic point-spread function (PSF) effects are significant. For this purpose, the CSST narrow-band data in the optical can provide valuable information for Euclid to obtain more accurate PSF measurements and to calibrate the color and color-gradient biases for galaxy shear measurements., Methods. We created image simulations, using the Hubble Deep UV data as the input catalog, for different surveys and quantified the photo-z performance using the EAZY template fitting code. For the blending analyses, we employed high-resolution HST-ACS CANDELS F606W and F814W data to synthesize mock simulated data for Euclid, CSST, and an LSST-like survey. We analyzed the blending fraction for different cases as well as the blending effects on galaxy photometric measurements. Furthermore, we demonstrated that CSST can provide a large enough number of high signal-to-noise ratio multi-band galaxy images to calibrate the color-gradient biases for Euclid., Results. The sky coverage of Euclid lies entirely within the CSST footprint. The combination of Euclid with the CSST data can thus be done more uniformly than with the various ground-based data that are part of the Euclid survey. Our studies show that by combining Euclid and CSST, we can reach a photo-z precision of sigma(NMAD)0.04 and an outlier fraction of eta 2.4% at the nominal depth of the Euclid Wide Survey (VIS24.5 AB mag). For CSST, including the Euclid Y,& 2006;J,& 2006;H bands reduces the overall photo-z outlier fraction from similar to 8.5% to 2.4%. For z & 2004;>& 2004;1, the improvements are even more significant. Because of the similarly high resolutions, the data combination of Euclid and CSST can be relatively straightforward for photometry measurements. On the other hand, to include ground-based data, sophisticated deblending utilizing priors from high-resolution space observations are required. The multi-band data from CSST are very helpful in controlling the chromatic PSF effect for Euclid VIS shear measurements. The color-gradient bias for Euclid galaxies with different bulge-to-total flux ratio at different redshifts can be well calibrated to the level of 0.1% using galaxies from the CSST deep survey.
- Published
- 2023
- Full Text
- View/download PDF
13. Gravitational Lensing: From μ-Lensing to Cosmic Shear Experiments
- Author
-
Bernardeau, Francis, Blanchard, Alain, editor, and Signore, Monique, editor
- Published
- 2005
- Full Text
- View/download PDF
14. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample
- Author
-
Porredon, A., Crocce, M., Elvin-Poole, J., Cawthon, R., Giannini, G., De Vicente, J., Carnero Rosell, A., Ferrero, I., Krause, E., Fang, X., Prat, J., Rodriguez-Monroy, M., Pandey, S., Pocino, A., Castander, F. J., Choi, A., Amon, A., Tutusaus, I., Dodelson, S., Sevilla-Noarbe, I., Fosalba, P., Gaztanaga, E., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Carrasco Kind, M., Chintalapati, P., Cordero, J., Derose, J., Di Valentino, E., Doux, C., Eifler, T. F., Everett, S., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Huterer, D., Jain, B., Jarvis, M., Lee, S., Lemos, P., Maccrann, N., Mena-Fernández, J., Muir, J., Myles, J., Park, Y., Raveri, M., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scolnic, D., Secco, L. F., Sheldon, E., Troja, A., Troxel, M. A., Weaverdyck, N., Yanny, B., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Eckert, K., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Petravick, D., Pieres, A., Plazas Malagón, A. A., Romer, A. K., Santiago, B., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Des, Collaboration, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Generalitat de Catalunya, European Research Council, Department of Energy (US), National Science Foundation (US), National Aeronautics and Space Administration (US), Porredon, A., Crocce, M., Elvin-Poole, J., Cawthon, R., Giannini, G., De Vicente, J., Carnero Rosell, A., Ferrero, I., Krause, E., Fang, X., Prat, J., Rodriguez-Monroy, M., Pandey, S., Pocino, A., Castander, F. J., Choi, A., Amon, A., Tutusaus, I., Dodelson, S., Sevilla-Noarbe, I., Fosalba, P., Gaztanaga, E., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Blazek, J., Camacho, H., Campos, A., Carrasco Kind, M., Chintalapati, P., Cordero, J., Derose, J., Di Valentino, E., Doux, C., Eifler, T. F., Everett, S., Ferté, A., Friedrich, O., Gatti, M., Gruen, D., Harrison, I., Hartley, W. G., Herner, K., Huff, E. M., Huterer, D., Jain, B., Jarvis, M., Lee, S., Lemos, P., Maccrann, N., Mena-Fernández, J., Muir, J., Myles, J., Park, Y., Raveri, M., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sánchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scolnic, D., Secco, L. F., Sheldon, E., Troja, A., Troxel, M. A., Weaverdyck, N., Yanny, B., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Bhargava, S., Brooks, D., Buckley-Geer, E., Burke, D. L., Carretero, J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Doel, P., Drlica-Wagner, A., Eckert, K., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Giannantonio, T., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., Lidman, C., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Petravick, D., Pieres, A., Plazas Malagón, A. A., Romer, A. K., Santiago, B., Scarpine, V., Schubnell, M., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Weller, J., Des, Collaboration, HEP, INSPIRE, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
luminous red galaxies ,data release ,pau survey ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,roman-space-telescope ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,oscillation spectroscopic survey ,Astrophysic ,Cosmology and Nongalactic Astrophysics ,internal consistency ,digital sky survey ,redshift distributions ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,photometric data set ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: A. Porredon et al., The cosmological information extracted from photometric surveys is most robust when multiple probes of the large scale structure of the Universe are used. Two of the most sensitive probes are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the way galaxies trace matter (the galaxy bias factor). The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000deg2 of the Dark Energy Survey’s first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies, especially selected to optimize such combination, and 100 million background shapes. We consider two flat cosmological models, the Standard Model with dark energy and cold dark matter (ΛCDM ) a variation with a free parameter for the dark energy equation of state (wCDM). Both models are marginalized over 25 astrophysical and systematic nuisance parameters. In ΛCDM we obtain for the matter density Ωm=0.320+0.041−0.034 and for the clustering amplitude S8≡σ8(Ωm/0.3)0.5=0.778+0.037−0.031, at 68% C.L. The latter is only 1σ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In wCDM we find Ωm=0.32+0.044−0.046, S8=0.777+0.049−0.051 and dark energy equation of state w=−1.031+0.218−0.379. We find that including smaller scales, while marginalizing over nonlinear galaxy bias, improves the constraining power in the Ωm−S8 plane by 31% and in the Ωm−w plane by 41% while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3×2pt)., Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management systemis supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-66861, No. FPA2015-68048, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds fromthe European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through Project No. CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq Grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive paid-up irrevocable world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Computations were made on the supercomputer Guillimin from McGill University, managed by Calcul Quebec and Compute Canada. The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), the ministere de l’Économie, de la science et de l’innovation du Quebec (MESI) and the Fonds de recherche du Quebec-Nature et technologies (FRQ-NT). This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Grants No. OCI-0725070 and No. ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This research used resources of the Ohio Supercomputer Center (OSC) [117] and of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.
- Published
- 2022
15. Dark Energy Survey Year 3 Results: Three-Point Shear Correlations and Mass Aperture Moments
- Author
-
Secco, Lucas F., Jarvis, M., Jain, B., Chang, C., Gatti, M., Frieman, J., Adhikari, S., Alarcon, A., Amon, A., Bechtol, K., Becker, M.R., Bernstein, G.M., Blazek, J., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Choi, A., Cordero, J., DeRose, J., Dodelson, S., Doux, C., Drlica-Wagner, A., Everett, S., Giannini, G., Gruen, D., Gruendl, R.A., Harrison, I., Hartley, W.G., Herner, K., Krause, E., MacCrann, N., McCullough, J., Myles, J., Navarro-Alsina, A., Prat, J., Rollins, R.P., Samuroff, S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Troxel, M.A., Zeurcher, D., Aguena, M., Andrade-Oliveira, F., Annis, J., Bacon, D., Bertin, E., Bocquet, S., Brooks, D., Burke, D.L., Carretero, J., Castander, F.J., Crocce, M., da Costa, L.N., Pereira, M.E.S., De Vicente, J., Diehl, H.T., Doel, P., Eckert, K., Ferrero, Ismael, Flaugher, B., Friedel, D., García-Bellido, J., Gutierrez, G., Hinton, S.R., Hollowood, D.L., Honscheid, K., Huterer, D., Kuehn, K., Kuropatkin, N., Maia, M.A.G., Marshall, J.L., Menanteau, F., Miquel, R., Mohr, J.J., Morgan, R., Muir, J., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A.A., Rodriguez-Monroy, M., Roodman, A., Sanchez, E., Serrano, S., Suchyta, E., Swanson, M.E.C., Tarle, G., Thomas, D., To, C., Weller, J., National Science Foundation (US), Department of Energy (US), Ministerio de Educación y Ciencia (España), Agencia Estatal de Investigación (España), Science and Technology Facilities Council (UK), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), European Research Council, European Commission, Generalitat de Catalunya, and UAM. Departamento de Física Teórica
- Subjects
Gravitational Lensing ,Quantum Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Física ,Molecular ,FOS: Physical sciences ,prospects ,Astrophysics::Cosmology and Extragalactic Astrophysics ,calibration ,Dark Energy ,Atomic ,Nuclear & Particles Physics ,weak-lensing surveys ,Particle and Plasma Physics ,cosmological constraints ,cfhtlens ,model predictions ,Nuclear ,Weak ,higher-order statistics ,cosmic shear ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: L. F. Secco et al., We present high signal-to-noise measurements of three-point shear correlations and the third moment of the mass aperture statistic using the first 3 years of data from the Dark Energy Survey. We additionally obtain the first measurements of the configuration and scale dependence of the four three-point shear correlations which carry cosmological information. With the third-order mass aperture statistic, we present tomographic measurements over angular scales of 4 to 60 arcminutes with a combined statistical significance of 15.0σ. Using the tomographic information and measuring also the second-order mass aperture, we additionally obtain a skewness parameter and its redshift evolution. We find that the amplitudes and scale-dependence of these shear 3pt functions are in qualitative agreement with measurements in a mock galaxy catalog based on N-body simulations, indicating promise for including them in future cosmological analyses. We validate our measurements by showing that B-modes, parity-violating contributions and PSF modeling uncertainties are negligible, and determine that the measured signals are likely to be of astrophysical and gravitational origin., M. J. is supported in part by National Science Foundation Grant No. 1907610. B. J. is supported in part by the U.S. Department of Energy Grant No. DE-SC0007901. C. C. is supported by DOE grant DE-SC0021949. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under Grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grants agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq Grant No. 465376/2014-2). We acknowledge support from the Australian Research Council Centre of Excellence for Allsky Astrophysics (CAASTRO), through Project No. CE110001020. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2022
- Full Text
- View/download PDF
16. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing
- Author
-
DES Collaboration, Abbott, T. M. C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Bhargava, S., Birrer, S., Blazek, J., Brandao-Souza, A., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Camacho, H., Campos, A., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., da Costa, L. N., Pereira, M. E. da Silva, Davis, C., Davis, T. M., De Vicente, J., DeRose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dietrich, J. P., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Evrard, A. E., Fang, X., Farahi, A., Fernandez, E., Ferrero, I., Fert��, A., Fosalba, P., Friedrich, O., Frieman, J., Garc��a-Bellido, J., Gatti, M., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Leget, P. -F., Lemos, P., Liddle, A. R., Lidman, C., Lima, M., Lin, H., MacCrann, N., Maia, M. A. G., Marshall, J. L., Martini, P., McCullough, J., Melchior, P., Mena-Fern��ndez, J., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paz-Chinch��n, F., Petravick, D., Pieres, A., Malag��n, A. A. Plazas, Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., S��nchez, C., Sanchez, E., Sanchez, J., Cid, D. Sanchez, Scarpine, V., Schubnell, M., Scolnic, D., Secco, L. F., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tucker, D. L., Tutusaus, I., Varga, T. N., Walker, A. R., Weaverdyck, N., Wechsler, R., Weller, J., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Alarcon, A., Allam, S., Alves, O., Amon, A., Andrade-Oliveira, F., Annis, J., Avila, S., Bacon, D., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Bhargava, S., Birrer, S., Blazek, J., Brandao-Souza, A., Bridle, S. L., Brooks, D., Buckley-Geer, E., Burke, D. L., Camacho, H., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cawthon, R., Chang, C., Chen, A., Chen, R., Choi, A., Conselice, C., Cordero, J., Costanzi, M., Crocce, M., Da Costa, L. N., Da Silva Pereira, M. E., Davis, C., Davis, T. M., De Vicente, J., Derose, J., Desai, S., Di Valentino, E., Diehl, H. T., Dietrich, J. P., Dodelson, S., Doel, P., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Elvin-Poole, J., Everett, S., Evrard, A. E., Fang, X., Farahi, A., Fernandez, E., Ferrero, I., Ferte, A., Fosalba, P., Friedrich, O., Frieman, J., Garcia-Bellido, J., Gatti, M., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Giannini, G., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Harrison, I., Hartley, W. G., Herner, K., Hinton, S. R., Hollowood, D. L., Honscheid, K., Hoyle, B., Huff, E. M., Huterer, D., Jain, B., James, D. J., Jarvis, M., Jeffrey, N., Jeltema, T., Kovacs, A., Krause, E., Kron, R., Kuehn, K., Kuropatkin, N., Lahav, O., Leget, P. -F., Lemos, P., Liddle, A. R., Lidman, C., Lima, M., Lin, H., Maccrann, N., Maia, M. A. G., Marshall, J. L., Martini, P., Mccullough, J., Melchior, P., Mena-Fernandez, J., Menanteau, F., Miquel, R., Mohr, J. J., Morgan, R., Muir, J., Myles, J., Nadathur, S., Navarro-Alsina, A., Nichol, R. C., Ogando, R. L. C., Omori, Y., Palmese, A., Pandey, S., Park, Y., Paz-Chinchon, F., Petravick, D., Pieres, A., Plazas Malagon, A. A., Porredon, A., Prat, J., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Romer, A. K., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Samuroff, S., Sanchez, C., Sanchez, E., Sanchez, J., Sanchez Cid, D., Scarpine, V., Schubnell, M., Scolnic, D., Secco, L. F., Serrano, S., Sevilla-Noarbe, I., Sheldon, E., Shin, T., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tabbutt, M., Tarle, G., Thomas, D., To, C., Troja, A., Troxel, M. A., Tucker, D. L., Tutusaus, I., Varga, T. N., Walker, A. R., Weaverdyck, N., Wechsler, R., Weller, J., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Ministerio de Ciencia, Innovación y Universidades (España), European Research Council, European Commission, Agencia Estatal de Investigación (España), Ministerio de Economía y Competitividad (España), Department of Energy (US), Generalitat de Catalunya, National Aeronautics and Space Administration (US), National Science Foundation (US), NSF's National Optical-Infrared Astronomy Research Laboratory, Laboratório Interinstitucional de E-Astronomia - LIneA, Argonne National Laboratory, Fermi National Accelerator Laboratory, University of Michigan, Universidade Estadual Paulista (UNESP), Stanford University, Universidad Autonoma de Madrid, University of Portsmouth, University of Hawai'i, University of Wisconsin-Madison, University of Pennsylvania, University of Sussex, 450 Serra Mall, Northeastern University, Observatoire de Sauverny, Universidade Estadual de Campinas (UNICAMP), University of Manchester, University College London, University of Chicago, SLAC National Accelerator Laboratory, Carnegie Mellon University, Instituto de Astrofisica de Canarias, Dpto. Astrofísica, National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, The Barcelona Institute of Science and Technology, Institut d'Estudis Espacials de Catalunya (IEEC), Institute of Space Sciences (ICE CSIC), Duke University, The Ohio State University, School of Physics and Astronomy, University of Trieste, INAF-Osservatorio Astronomico di Trieste, Institute for Fundamental Physics of the Universe, Observatório Nacional, University of Queensland, Medioambientales y Tecnológicas (CIEMAT), Lawrence Berkeley National Laboratory, IIT Hyderabad, Ludwig-Maximilians-Universität, University of Arizona, California Institute of Technology, Santa Cruz Institute for Particle Physics, University of Texas at Austin, University of Oslo, University of Cambridge, 382 Via Pueblo Mall, Denys Wilkinson Building, University of Geneva, Center for Astrophysics and Harvard and Smithsonian, Université de Paris, Macquarie University, Lowell Observatory, University of Edinburgh, Universidade de Lisboa, Perimeter Institute for Theoretical Physics, The Australian National University, Australian National University, Universidade de São Paulo (USP), Texas AandM University, Harvard University, Peyton Hall, Institució Catalana de Recerca i Estudis Avançats, Max Planck Institute for Extraterrestrial Physics, The University of Tokyo, Brookhaven National Laboratory, University of Southampton, Oak Ridge National Laboratory, Ludwig-Maximilians Universität München, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), DES, UAM. Departamento de Física Teórica, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
luminous red galaxies ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,parameter constraints ,supernova legacy survey ,Astrophysics ,01 natural sciences ,Astrophysic ,Cosmology and Nongalactic Astrophysics ,0103 physical sciences ,LENTES GRAVITACIONAIS ,Weak ,010303 astronomy & astrophysics ,mass correlation-function ,Gravitational Lensing ,extragalactic objects ,010308 nuclear & particles physics ,Física ,Dark Energy ,ia supernovae ,digital sky survey ,power-spectrum ,photometric data set ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
DES Collaboration: T. M. C. Abbott et al., We present the first cosmology results from large-scale structure using the full 5000 deg2 of imaging data from the Dark Energy Survey (DES) Data Release 1. We perform an analysis of large-scale structure combining three two-point correlation functions (3×2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions, galaxy–galaxy lensing. To achieve the cosmological precision enabled by these measurements has required updates to nearly every part of the analysis from DES Year 1, including the use of two independent galaxy clustering samples, modeling advances, and several novel improvements in the calibration of gravitational shear and photometric redshift inference. The analysis was performed under strict conditions to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results and tests of the robustness of our results to this decision. We model the data within the flat ΛCDM and wCDM cosmological models, marginalizing over 25 nuisance parameters. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude S8=0.776+0.017−0.017 and matter density Ωm=0.339+0.032−0.031 in ΛCDM, mean with 68% confidence limits; S8=0.775+0.026−0.024, Ωm=0.352+0.035−0.041, and dark energy equation-of-state parameter w=−0.98+0.32−0.20 in wCDM. These constraints correspond to an improvement in signal-to-noise of the DES Year 3 3×2pt data relative to DES Year 1 by a factor of 2.1, about 20% more than expected from the increase in observing area alone. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed p=0.13–0.48. We find better agreement between DES 3×2pt and Planck than in DES Y1, despite the significantly improved precision of both. When combining DES 3×2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find p=0.34. Combining all of these datasets with Planck CMB lensing yields joint parameter constraints of S8=0.812+0.008−0.008, Ωm=0.306+0.004−0.005, h=0.680+0.004−0.003, and ∑mν, Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministerio da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements No. 240672, No. 291329, and No. 306478.We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work also used resources on Duke Compute Cluster (DCC), the CCAPP condo of the Ruby Cluster at the Ohio Supercomputing Center [232], and computing resources at SLAC National Accelerator Laboratory. We also thank the staff of the Fermilab Computing Sector for their support. Plots in this manuscript were produced partly with MATPLOTLIB [233], and it has been prepared using NASA’s Astrophysics Data System Bibliographic Services.
- Published
- 2022
17. ShapePipe: a new shape measurement pipeline and weak-lensing application to UNIONS/CFIS data
- Author
-
Axel Guinot, Martin Kilbinger, Samuel Farrens, Austin Peel, Arnau Pujol, Morgan Schmitz, Jean-Luc Starck, Thomas Erben, Raphael Gavazzi, Stephen Gwyn, Michael J. Hudson, Hendrik Hildebrandt, Liaudat Tobias, Lance Miller, Isaac Spitzer, Ludovic Van Waerbeke, Jean-Charles Cuillandre, Sébastien Fabbro, Alan McConnachie, and Yannick Mellier
- Subjects
data release ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,gravitational lensing ,Astrophysics::Instrumentation and Methods for Astrophysics ,weak ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,calibration ,image processing ,python ,observations ,quality ,Space and Planetary Science ,cfhtlens ,mpi ,techniques ,cosmology ,sextractor ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Context. The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is an ongoing collaboration that will provide the largest deep photometric survey of the northern sky in four optical bands to date. As part of this collaboration, the Canada-France Imaging Survey (CFIS) is observing r-band data with an average seeing of 0.65 arcsec, which is complete to magnitude 24.5 and thus ideal for weak-lensing studies., Aims. We perform the first weak-lensing analysis of CFIS r-band data over an area spanning 1700 deg(2) of the sky. We create a catalogue with measured shapes for 40 million galaxies, corresponding to an effective density of 6.8 galaxies per square arcminute, and demonstrate a low level of systematic biases. This work serves as the basis for further cosmological studies that will use the full UNIONS survey of 4800 deg(2) when completed., Methods. Here we present SHAPEPIPE, a newly developed weak-lensing pipeline. This pipeline makes use of state-of-the-art methods such as NGMIX for accurate galaxy shape measurement. Shear calibration is performed with metacalibration. We carry out extensive validation tests on the point spread function (PSF) and on the galaxy shapes. In addition, we create realistic image simulations to validate the estimated shear., Results. We quantify the PSF model accuracy and show that the level of systematics is low as measured by the PSF residuals. Their effect on the shear two-point correlation function is sub-dominant compared to the cosmological contribution on angular scales < 100'. The additive shear bias is below 5 x 10(-4), and the residual multiplicative shear bias is at most 10(-3) as measured on image simulations. Using complete orthogonal sets of E-/B-mode integrals (COSEBIs), we show that there are no significant B-modes present in second-order shear statistics. We present convergence maps and see clear correlations of the E-mode with known cluster positions. We measure the stacked tangential shear profile around Planck clusters at a significance higher than 4 sigma.
- Published
- 2022
- Full Text
- View/download PDF
18. Dark energy survey year 3 results: High-precision measurement and modeling of galaxy-galaxy lensing
- Author
-
Prat, J., Blazek, J., Sánchez, C., Tutusaus, I., Pandey, S., Elvin-Poole, J., Krause, E., Troxel, M. A., Secco, L. F., Amon, A., Derose, J., Zacharegkas, G., Chang, C., Jain, B., Maccrann, N., Park, Y., Sheldon, E., Giannini, G., Bocquet, S., To, C., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Camacho, H., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Cawthon, R., Chen, R., Choi, A., Cordero, J., Crocce, M., Davis, C., De Vicente, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Everett, S., Fang, X., Farahi, A., Ferté, A., Fosalba, P., Friedrich, O., Gatti, M., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., Mccullough, J., Muir, J., Myles, J., Navarro-Alsina, A., Porredon, A., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sanchez, J., Sevilla-Noarbe, I., Shin, T., Troja, A., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Yanny, B., Yin, B., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Bacon, D., Brooks, D., Burke, D. L., Carretero, J., Conselice, C., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Desai, S., Dietrich, J. P., Doel, P., Evrard, A. E., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Lin, H., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miller, C. J., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Petravick, D., Plazas Malagón, A. A., Sanchez, E., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Weller, J., Des, Collaboration, A Prat, J., Blazek, J., Sánchez, C., Tutusaus, I., Pandey, S., Elvin- Poole, J., Krause, E., Troxel, M. A., Secco, L. F., Amon, A., Derose, J., Zacharegkas, G., Chang, C., Jain, B., Maccrann, N., Park, Y., Sheldon, E., Giannini, G., Bocquet, S., To, C., Alarcon, A., Alves, O., Andrade-Oliveira, F., Baxter, E., Bechtol, K., Becker, M. R., Bernstein, G. M., Camacho, H., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Cawthon, R., Chen, R., Choi, A., Cordero, J., Crocce, M., Davis, C., De Vicente, J., Diehl, H. T., Dodelson, S., Doux, C., Drlica-Wagner, A., Eckert, K., Eifler, T. F., Elsner, F., Everett, S., Fang, X., Farahi, A., Ferté, A., Fosalba, P., Friedrich, O., Gatti, M., Gruen, D., Gruendl, R. A., Harrison, I., Hartley, W. G., Herner, K., Huang, H., Huff, E. M., Huterer, D., Jarvis, M., Kuropatkin, N., Leget, P. -F., Lemos, P., Liddle, A. R., Mccullough, J., Muir, J., Myles, J., Navarro- Alsina, A., Porredon, A., Raveri, M., Rodriguez-Monroy, M., Rollins, R. P., Roodman, A., Rosenfeld, R., Ross, A. J., Rykoff, E. S., Sanchez, J., Sevilla-Noarbe, I., Shin, T., Troja, A., Varga, T. N., Weaverdyck, N., Wechsler, R. H., Yanny, B., Yin, B., Zuntz, J., Abbott, T. M. C., Aguena, M., Allam, S., Annis, J., Bacon, D., Brooks, D., Burke, D. L., Carretero, J., Conselice, C., Costanzi, M., da Costa, L. N., Pereira, M. E. S., Desai, S., Dietrich, J. P., Doel, P., Evrard, A. E., Ferrero, I., Flaugher, B., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Gschwend, J., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Lahav, O., Lin, H., Maia, M. A. G., Marshall, J. L., Martini, P., Melchior, P., Menanteau, F., Miller, C. J., Miquel, R., Mohr, J. J., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Petravick, D., Plazas Malagón, A. A., Sanchez, E., Serrano, S., Smith, M., Soares-Santos, M., Suchyta, E., Tarle, G., Thomas, D., Weller, J., and UAM. Departamento de Física Teórica
- Subjects
Gravitational Lensing ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,cosmological parameter constraints ,FOS: Physical sciences ,Física ,marginalization ,Astrophysics::Cosmology and Extragalactic Astrophysics ,calibration ,Astrophysics ,Dark Energy ,Astrophysic ,Cosmology and Nongalactic Astrophysics ,redshift distribution ,mass ,Weak ,photometric data set ,sdss ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics ,intrinsic alignments - Abstract
DES Collaboration: J. Prat et al., We present and characterize the galaxy-galaxy lensing signal measured using the first three years of data from the Dark Energy Survey (DES Y3) covering 4132 deg2. These galaxy-galaxy measurements are used in the DES Y3 3×2pt cosmological analysis, which combines weak lensing and galaxy clustering information. We use two lens samples: a magnitude-limited sample and the redmagic sample, which span the redshift range ∼0.2–1 with 10.7 and 2.6 M galaxies, respectively. For the source catalog, we use the metacalibration shape sample, consisting of ≃100M galaxies separated into four tomographic bins. Our galaxy-galaxy lensing estimator is the mean tangential shear, for which we obtain a total SNR of ∼148 for maglim (∼120 for redmagic), and ∼67 (∼55) after applying the scale cuts of 6Mpc/h. Thus we reach percent-level statistical precision, which requires that our modeling and systematic-error control be of comparable accuracy. The tangential shear model used in the 3×2pt cosmological analysis includes lens magnification, a five-parameter intrinsic alignment model, marginalization over a point mass to remove information from small scales and a linear galaxy bias model validated with higher-order terms. We explore the impact of these choices on the tangential shear observable and study the significance of effects not included in our model, such as reduced shear, source magnification, and source clustering. We also test the robustness of our measurements to various observational and systematics effects, such as the impact of observing conditions, lens-source clustering, random-point subtraction, scale-dependent metacalibration responses, point spread function residuals, and B modes.
- Published
- 2022
19. Euclid: Covariance of weak lensing pseudo- C -estimates: Calculation, comparison to simulations, and dependence on survey geometry
- Author
-
R. E. Upham, M. L. Brown, L. Whittaker, A. Amara, N. Auricchio, D. Bonino, E. Branchini, M. Brescia, J. Brinchmann, V. Capobianco, C. Carbone, J. Carretero, M. Castellano, S. Cavuoti, A. Cimatti, R. Cledassou, G. Congedo, L. Conversi, Y. Copin, L. Corcione, M. Cropper, A. Da Silva, H. Degaudenzi, M. Douspis, F. Dubath, C. A. J. Duncan, X. Dupac, S. Dusini, A. Ealet, S. Farrens, S. Ferriol, P. Fosalba, M. Frailis, E. Franceschi, M. Fumana, B. Garilli, B. Gillis, C. Giocoli, F. Grupp, S. V. H. Haugan, H. Hoekstra, W. Holmes, F. Hormuth, A. Hornstrup, K. Jahnke, S. Kermiche, A. Kiessling, M. Kilbinger, T. Kitching, M. Kümmel, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, O. Marggraf, K. Markovic, F. Marulli, M. Meneghetti, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. M. Niemi, C. Padilla, S. Paltani, F. Pasian, K. Pedersen, V. Pettorino, S. Pires, M. Poncet, L. Popa, F. Raison, J. Rhodes, E. Rossetti, R. Saglia, B. Sartoris, P. Schneider, A. Secroun, G. Seidel, C. Sirignano, G. Sirri, L. Stanco, J.-L. Starck, P. Tallada-Crespí, D. Tavagnacco, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, L. Valenziano, Y. Wang, G. Zamorani, J. Zoubian, S. Andreon, M. Baldi, S. Camera, V. F. Cardone, G. Fabbian, G. Polenta, A. Renzi, B. Joachimi, A. Hall, A. Loureiro, E. Sellentin, Centre National d'Études Spatiales [Toulouse] (CNES), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Euclid, Upham, R. E., Brown, M. L., Whittaker, L., Amara, A., Auricchio, N., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Capobianco, V., Carbone, C., Carretero, J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Congedo, G., Conversi, L., Copin, Y., Corcione, L., Cropper, M., Da Silva, A., Degaudenzi, H., Douspis, M., Dubath, F., Duncan, C. A. J., Dupac, X., Dusini, S., Ealet, A., Farrens, S., Ferriol, S., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Garilli, B., Gillis, B., Giocoli, C., Grupp, F., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hormuth, F., Hornstrup, A., Jahnke, K., Kermiche, S., Kiessling, A., Kilbinger, M., Kitching, T., Kummel, M., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Marggraf, O., Markovic, K., Marulli, F., Meneghetti, M., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Niemi, S. M., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Pettorino, V., Pires, S., Poncet, M., Popa, L., Raison, F., Rhodes, J., Rossetti, E., Saglia, R., Sartoris, B., Schneider, P., Secroun, A., Seidel, G., Sirignano, C., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespi, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Wang, Y., Zamorani, G., Zoubian, J., Andreon, S., Baldi, M., Camera, S., Cardone, V. F., Fabbian, G., Polenta, G., Renzi, A., Joachimi, B., Hall, A., Loureiro, A., and Sellentin, E.
- Subjects
FOS: Computer and information sciences ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,likelihood ,2-point statistics ,FOS: Physical sciences ,Cosmology: observations ,Gravitational lensing: weak ,Methods: statistical ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmology: observation ,Statistics - Applications ,errors ,Statistics::Methodology ,Applications (stat.AP) ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,[PHYS]Physics [physics] ,polarization ,temperature ,Astronomy and Astrophysics ,matrix ,power spectrum covariance ,Space and Planetary Science ,impact ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Instrumentation and Methods for Astrophysics ,cosmology ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
An accurate covariance matrix is essential for obtaining reliable cosmological results when using a Gaussian likelihood. In this paper we study the covariance of pseudo-$C_\ell$ estimates of tomographic cosmic shear power spectra. Using two existing publicly available codes in combination, we calculate the full covariance matrix, including mode-coupling contributions arising from both partial sky coverage and non-linear structure growth. For three different sky masks, we compare the theoretical covariance matrix to that estimated from publicly available N-body weak lensing simulations, finding good agreement. We find that as a more extreme sky cut is applied, a corresponding increase in both Gaussian off-diagonal covariance and non-Gaussian super-sample covariance is observed in both theory and simulations, in accordance with expectations. Studying the different contributions to the covariance in detail, we find that the Gaussian covariance dominates along the main diagonal and the closest off-diagonals, but further away from the main diagonal the super-sample covariance is dominant. Forming mock constraints in parameters describing matter clustering and dark energy, we find that neglecting non-Gaussian contributions to the covariance can lead to underestimating the true size of confidence regions by up to 70 per cent. The dominant non-Gaussian covariance component is the super-sample covariance, but neglecting the smaller connected non-Gaussian covariance can still lead to the underestimation of uncertainties by 10--20 per cent. A real cosmological analysis will require marginalisation over many nuisance parameters, which will decrease the relative importance of all cosmological contributions to the covariance, so these values should be taken as upper limits on the importance of each component., 15 pages, 8 figures; matches version accepted by A&A; code available at https://github.com/robinupham/shear_pcl_cov
- Published
- 2022
- Full Text
- View/download PDF
20. Observables In Cosmology: Three Astronomical Perspectives
- Author
-
Francfort, Jérémie
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Lensing ,Black Holes ,FOS: Physical sciences ,Conformal Frames ,Astrophysics::Cosmology and Extragalactic Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Cosmic shear ,General Relativity and Quantum Cosmology ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Effective Theory of Gravity - Abstract
In this thesis, I present three projects I carried out during m PhD. In the first project, I introduce Conformal Transformations and the Galaxy Number County. I explicitly show that the Galaxy Number Counts is invariant under Conformal Transformations, which makes it a good physical observable. In the second project, I study how weak lensing, and in particular cosmic shear, affects the shape of the galaxy images. I show that, if the light polarisation is also measured, the rotation of the main axes of the elliptical galaxy shape becomes a cosmological observable. I show how this can be used to estimate cosmic shear and its correlation functions. In the third project, I define a higher order (Riemann-squared and -cubed) Lagrangian Effective Theory of Gravity. I compute the linear correction to the speed and the quasinormal frequencies of the gravitational waves in this theory around a Schwarzschild-like background., Comment: PhD Thesis
- Published
- 2022
- Full Text
- View/download PDF
21. Euclid preparation. XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses
- Author
-
Martin Crocce, Chiara Sirignano, O. Mansutti, L. Whittaker, Massimo Meneghetti, I. Ferrero, Alina Kiessling, Edwin A. Valentijn, Gianluca Castignani, S. Maurogordato, Giuseppe Riccio, P. B. Lilje, Carlo Burigana, Rafael Toledo-Moreo, B. Gillis, Davide Maino, Felix Hormuth, G. Sirri, F. Sureau, W. A. Holmes, Marco Baldi, Richard Massey, Knud Jahnke, K. Pedersen, A. Da Silva, Enrico Bozzo, E. Romelli, Simona Mei, C. Bodendorf, Jussi Valiviita, L. Popa, R. Cledassou, Luigi Guzzo, Andrea Cimatti, A. Pocino, F. Raison, Hélène M. Courtois, M. Tenti, Jarle Brinchmann, Robert C. Nichol, M. Poncet, Massimo Brescia, D. Di Ferdinando, Ghassem Gozaliasl, G. Meylan, D. Bonino, C. Neissner, C. S. Carvalho, Anne Costille, C. A. J. Duncan, M. Viel, A. Balaguera-Antolínez, Valeria Pettorino, Leonardo Corcione, S. Serrano, X. Dupac, Jean Coupon, C. Baccigalupi, R. Benton Metcalf, S. Farrens, Lauro Moscardini, V. Scottez, Yu Wang, Marco Castellano, G. Zamorani, Roberto P. Saglia, Andrea Biviano, Martin Kunz, F. Grupp, S. Casas, S. M. Niemi, J. Nightingale, Enzo Branchini, A. Secroun, N. Martinet, Mark Cropper, G. Seidel, Ismael Tereno, L. Stanco, L. Conversi, E. Medinaceli, Doug Potter, Stefano Cavuoti, Lucia Pozzetti, A. Cappi, F. J. Castander, C. C. Kirkpatrick, G. Congedo, R. Nakajima, Emanuel Rossetti, B. Morin, Fabio Finelli, F. Lacasa, Y. Copin, C. Padilla, Andrea Tramacere, W. Gillard, M. Martinelli, E. Keihänen, S. Kermiche, Mauro Roncarelli, Domenico Sapone, B. Garilli, I. Lloro, E. Munari, Sotiria Fotopoulou, Ariel G. Sánchez, Julien Zoubian, T. Vassallo, Romain Teyssier, Stefano Camera, Ole Marggraf, S. de la Torre, Z. Sakr, V. Capobianco, L. Patrizii, Carlo Giocoli, Stefano Andreon, S. Dusini, M. Frailis, A. Balestra, Ralf Bender, Pedro G. Ferreira, A. Boucaud, Jason Rhodes, Luca Valenziano, E. Zucca, F. Dubath, S. Bardelli, G. Polenta, Pablo Fosalba, Peter Schneider, Elisabetta Maiorano, Fabio Pasian, Hannu Kurki-Suonio, Jean-Gabriel Cuby, N. Welikala, Natalia Auricchio, Thomas D. Kitching, A. Porredon, V. F. Cardone, C. Colodro-Conde, Michele Moresco, Andy Taylor, Will J. Percival, Alkistis Pourtsidou, Christopher J. Conselice, S. Paltani, E. Franceschi, Sebastiano Ligori, Roberto Scaramella, Javier Graciá-Carpio, A. Renzi, Remi A. Cabanac, S. Galeotta, S. Pires, Federico Marulli, Andrea Zacchei, I. Tutusaus, Astronomy, Pocino, A., Tutusaus, I., Castander, F. J., Fosalba, P., Crocce, M., Porredon, A., Camera, S., Cardone, V., Casas, S., Kitching, T., Lacasa, F., Martinelli, M., Pourtsidou, A., Sakr, Z., Andreon, S., Auricchio, N., Baccigalupi, C., Balaguera-Antolinez, A., Baldi, M., Balestra, A., Bardelli, S., Bender, R., Biviano, A., Bodendorf, C., Bonino, D., Boucaud, A., Bozzo, E., Branchini, E., Brescia, M., Brinchmann, J., Burigana, C., Cabanac, R., Capobianco, V., Cappi, A., Carvalho, C. S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Costille, A., Coupon, J., Courtois, H. M., Cropper, M., Cuby, J. -G., Da Silva, A., De La Torre, S., Di Ferdinando, D., Dubath, F., Duncan, C., Dupac, X., Dusini, S., Farrens, S., Ferreira, P. G., Ferrero, I., Finelli, F., Fotopoulou, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., Gillard, W., Gillis, B., Giocoli, C., Gozaliasl, G., Gracia-Carpio, J., Grupp, F., Guzzo, L., Holmes, W., Hormuth, F., Jahnke, K., Keihanen, E., Kermiche, S., Kiessling, A., Kirkpatrick, C. C., Kunz, M., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Mansutti, O., Marggraf, O., Martinet, N., Marulli, F., Massey, R., Maurogordato, S., Medinaceli, E., Mei, S., Meneghetti, M., Benton Metcalf, R., Meylan, G., Moresco, M., Morin, B., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S., Nightingale, J., Padilla, C., Paltani, S., Pasian, F., Patrizii, L., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L., Potter, D., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sanchez, A. G., Sapone, D., Scaramella, R., Schneider, P., Scottez, V., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Stanco, L., Sureau, F., Taylor, A. N., Tenti, M., Tereno, I., Teyssier, R., Toledo-Moreo, R., Tramacere, A., Valentijn, E. A., Valenziano, L., Valiviita, J., Vassallo, T., Viel, M., Wang, Y., Welikala, N., Whittaker, L., Zacchei, A., Zamorani, G., Zoubian, J., Zucca, E., Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Joseph Louis LAGRANGE (LAGRANGE), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Euclid, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Department of Physics, Research Program in Systems Oncology, Helsinki Institute of Physics, Pocino A., Tutusaus I., Castander F.J., Fosalba P., Crocce M., Porredon A., Camera S., Cardone V., Casas S., Kitching T., Lacasa F., Martinelli M., Pourtsidou A., Sakr Z., Andreon S., Auricchio N., Baccigalupi C., Balaguera-Antolinez A., Baldi M., Balestra A., Bardelli S., Bender R., Biviano A., Bodendorf C., Bonino D., Boucaud A., Bozzo E., Branchini E., Brescia M., Brinchmann J., Burigana C., Cabanac R., Capobianco V., Cappi A., Carvalho C.S., Castellano M., Castignani G., Cavuoti S., Cimatti A., Cledassou R., Colodro-Conde C., Congedo G., Conselice C.J., Conversi L., Copin Y., Corcione L., Costille A., Coupon J., Courtois H.M., Cropper M., Cuby J.-G., Da Silva A., De La Torre S., Di Ferdinando D., Dubath F., Duncan C., Dupac X., Dusini S., Farrens S., Ferreira P.G., Ferrero I., Finelli F., Fotopoulou S., Frailis M., Franceschi E., Galeotta S., Garilli B., Gillard W., Gillis B., Giocoli C., Gozaliasl G., Gracia-Carpio J., Grupp F., Guzzo L., Holmes W., Hormuth F., Jahnke K., Keihanen E., Kermiche S., Kiessling A., Kirkpatrick C.C., Kunz M., Kurki-Suonio H., Ligori S., Lilje P.B., Lloro I., Maino D., Maiorano E., Mansutti O., Marggraf O., Martinet N., Marulli F., Massey R., Maurogordato S., Medinaceli E., Mei S., Meneghetti M., Benton Metcalf R., Meylan G., Moresco M., Morin B., Moscardini L., Munari E., Nakajima R., Neissner C., Nichol R.C., Niemi S., Nightingale J., Padilla C., Paltani S., Pasian F., Patrizii L., Pedersen K., Percival W.J., Pettorino V., Pires S., Polenta G., Poncet M., Popa L., Potter D., Pozzetti L., Raison F., Renzi A., Rhodes J., Riccio G., Romelli E., Roncarelli M., Rossetti E., Saglia R., Sanchez A.G., Sapone D., Scaramella R., Schneider P., Scottez V., Secroun A., Seidel G., Serrano S., Sirignano C., Sirri G., Stanco L., Sureau F., Taylor A.N., Tenti M., Tereno I., Teyssier R., Toledo-Moreo R., Tramacere A., Valentijn E.A., Valenziano L., Valiviita J., Vassallo T., Viel M., Wang Y., Welikala N., Whittaker L., Zacchei A., Zamorani G., Zoubian J., and Zucca E.
- Subjects
luminous red galaxies ,Cosmological parameter ,Astrophysics ,Surveys ,01 natural sciences ,Cosmology ,techniques: photometric ,galaxies ,Galaxies: distances and redshift ,distances and redshifts ,Survey ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Physics ,Redshift survey ,lsst ,astro-ph.CO ,galaxies: distances and redshifts ,constraints ,Astrophysics - Cosmology and Nongalactic Astrophysics ,redshift survey ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmological parameters ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,photometric ,Settore FIS/05 - Astronomia e Astrofisica ,surveys ,0103 physical sciences ,distances and redshifts [Galaxies] ,cosmological parameters ,Spurious relationship ,Cluster analysis ,dark energy survey ,Astrophysics::Galaxy Astrophysics ,010308 nuclear & particles physics ,photometric [Techniques] ,Astronomy and Astrophysics ,space ,115 Astronomy, Space science ,Redshift ,Galaxy ,Space and Planetary Science ,Galaxies: distances and redshifts ,Techniques: photometric ,techniques ,Focus (optics) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmology ,cosmic shear ,intrinsic alignments - Abstract
Pocino, A., et al. (Euclid Collaboration), Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the results of the analyses of galaxy clustering with photometrically selected galaxies (GCph) and weak lensing. In the next decade, space missions such as Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism together with these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with an equal width in redshift provide a higher figure of merit (FoM) than equipopulated bins and that increasing the number of redshift bins from ten to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase in the survey depth provides a higher FoM. However, when we include faint galaxies beyond the limit of the spectroscopic training data, the resulting FoM decreases because of the spurious photo-zs. When combining GCph and GGL, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes and high redshift increases the FoM, even when they are beyond the spectroscopic limit, since the number density increase compensates for the photo-z degradation in this case. We conclude that there is more information that can be extracted beyond the nominal ten tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample since they can degrade the cosmological constraints.
- Published
- 2021
- Full Text
- View/download PDF
22. A novel approach in the WIMP quest: cross-correlation of gamma-ray anisotropies and cosmic shear.
- Author
-
Fornengo, Nicolao
- Subjects
- *
WEAKLY interacting massive particles , *ANISOTROPY , *GAMMA rays , *CROSS correlation , *DARK matter , *GRAVITATIONAL effects , *DARK energy , *GENERAL relativity (Physics) - Abstract
The presence of large amounts of dark matter in the Universe is the expected source of two different cosmological effects: small gravitational distortions in the shapes of background galaxies (cosmic shear) and the cosmological emission of gamma rays. In fact, dark matter structures are responsible for the bending of light in the weak lensing regime, and those same cosmological objects can emit gamma-rays, either because they host astrophysical sources (active galactic nuclei or starforming galaxies) or directly by dark matter annihilations or decays. Gamma-rays emission should therefore exhibit strong correlation with the cosmic shear signal. In this note we report on the computation of the cross-correlation angular power spectrum of cosmic shear and gamma-rays produced by the annihilation/decay of weakly interacting massive composing particle dark matter, as well as by astrophysical sources. We show that the shear/gamma-rays cross-correlation provides novel information on the composition of the extra-galactic gamma-ray background and can represent a potentially detectable signal by combining Fermi-LAT data with forthcoming galaxy surveys, like Dark Energy Survey and Euclid. At the same time, a detection of a cross-correlation signal would demonstrate that the weak lensing observables are indeed due to particle DM matter and not to possible modifications of General Relativity. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
23. Lifting weak lensing degeneracies with a field-based likelihood
- Author
-
Guilhem Lavaux, Natalia Porqueres, Alan Heavens, Daniel J. Mortlock, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Science and Technology Facilities Council (STFC)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Field (physics) ,Primordial fluctuations ,COSMIC SHEAR ,POWER SPECTRUM ,Dark matter ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,2-POINT ,01 natural sciences ,Omega ,gravitational lensing: weak ,0103 physical sciences ,0201 Astronomical and Space Sciences ,DARK-MATTER ,Statistical physics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Weak gravitational lensing ,KIDS-450 COSMOLOGICAL CONSTRAINTS ,Physics ,COUNTS ,Science & Technology ,010308 nuclear & particles physics ,Matter power spectrum ,Spectral density ,Astronomy and Astrophysics ,methods: data analysis ,PEAK STATISTICS ,PRECISION ,Amplitude ,Space and Planetary Science ,Physical Sciences ,SKEWNESS ,INFERENCE ,large-scale structure of Universe ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a field-based approach to the analysis of cosmic shear data to infer jointly cosmological parameters and the dark matter distribution. This forward modelling approach samples the cosmological parameters and the initial matter fluctuations, using a physical gravity model to link the primordial fluctuations to the non-linear matter distribution. Cosmological parameters are sampled and updated consistently through the forward model, varying (1) the initial matter power spectrum, (2) the geometry through the distance-redshift relationship, and (3) the growth of structure and light-cone effects. Our approach extracts more information from the data than methods based on two-point statistics. We find that this field-based approach lifts the strong degeneracy between the cosmological matter density, $\Omega_\mathrm{m}$, and the fluctuation amplitude, $\sigma_8$, providing tight constraints on these parameters from weak lensing data alone. In the simulated four-bin tomographic experiment we consider, the field-based likelihood yields marginal uncertainties on $\sigma_8$ and $\Omega_\mathrm{m}$ that are, respectively, a factor of 3 and 5 smaller than those from a two-point power spectrum analysis applied to the same underlying data., Comment: Accepted in MNRAS
- Published
- 2021
24. Dark Energy Survey Year 1 Results: Cosmological Constraints from Cluster Abundances, Weak Lensing, and Galaxy Correlations
- Author
-
G. Gutierrez, David J. Brooks, Robert Morgan, Erin Sheldon, J. Prat, Joe Zuntz, S. Samuroff, Jack Elvin-Poole, Matthew R. Becker, M. Carrasco Kind, M. E. C. Swanson, Alex Drlica-Wagner, J. Carretero, Dragan Huterer, V. Scarpine, Ashley J. Ross, Tamara M. Davis, E. Bertin, Xiao Fang, Douglas L. Tucker, Kyler Kuehn, Basilio X. Santiago, T. N. Varga, M. Gatti, J. Annis, A. Carnero Rosell, Youngsoo Park, D. L. Burke, W. C. Wester, Robert A. Gruendl, R. Cawthon, Marcos Lima, I. Ferrero, Matt J. Jarvis, P. Vielzeuf, Yanxi Zhang, Tim Eifler, M. Costanzi, W. G. Hartley, Arya Farahi, Josh Frieman, J. P. Dietrich, Juan Garcia-Bellido, Eduardo Rozo, Oliver Friedrich, I. Sevilla-Noarbe, T. McClintock, J. Muir, N. Kuropatkin, J. DeRose, E. Suchyta, August E. Evrard, Martin Crocce, R. D. Wilkinson, Ben Hoyle, Jochen Weller, L. N. da Costa, Tesla E. Jeltema, G. Tarle, Antonella Palmese, M. A. G. Maia, Michael Troxel, T. M. C. Abbott, Chun-Hao To, E. J. Sanchez, J. Myles, David J. James, Enrique Gaztanaga, Jonathan Blazek, Christopher J. Conselice, Markus Rau, Sarah Bridle, Santiago Avila, Chihway Chang, P. Fosalba, Carlos Solans Sanchez, Michel Aguena, Sunayana Bhargava, A. K. Romer, S. Desai, B. Flaugher, Sebastian Bocquet, Daniel Thomas, H. T. Diehl, Ramon Miquel, D. L. Hollowood, Niall MacCrann, S. Serrano, C. Davis, M. Smith, A. A. Plazas, Gary Bernstein, Hao-Yi Wu, Daniel Gruen, A. Porredon, V. Miranda, Maria E. S. Pereira, Elisabeth Krause, S. Everett, F. Paz-Chinchón, Jennifer L. Marshall, Eli S. Rykoff, Risa H. Wechsler, Richard G. Kron, A. Roodman, Tommaso Giannantonio, A. Choi, K. Honscheid, Alexandra Amon, Felipe Menanteau, Samuel Hinton, Department of Energy (US), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), German Research Foundation, European Commission, To, C., Krause, E., Rozo, E., Wu, H., Gruen, D., Wechsler, R. H., Eifler, T. F., Rykoff, E. S., Costanzi, M., Becker, M. R., Bernstein, G. M., Blazek, J., Bocquet, S., Bridle, S. L., Cawthon, R., Choi, A., Crocce, M., Davis, C., Derose, J., Drlica-Wagner, A., Elvin-Poole, J., Fang, X., Farahi, A., Friedrich, O., Gatti, M., Gaztanaga, E., Giannantonio, T., Hartley, W. G., Hoyle, B., Jarvis, M., Maccrann, N., Mcclintock, T., Miranda, V., Pereira, M. E. S., Park, Y., Porredon, A., Prat, J., Rau, M. M., Ross, A. J., Samuroff, S., Sánchez, C., Sevilla-Noarbe, I., Sheldon, E., Troxel, M. A., Varga, T. N., Vielzeuf, P., Zhang, Y., Zuntz, J., Abbott, T. M. C., Aguena, M., Annis, J., Avila, S., Bertin, E., Bhargava, S., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Chang, C., Conselice, C., da Costa, L. N., Davis, T. M., Desai, S., Diehl, H. T., Dietrich, J. P., Everett, S., Evrard, A. E., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gruendl, R. A., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Huterer, D., James, D. J., Jeltema, T., Kron, R., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Morgan, R., Muir, J., Myles, J., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Roodman, A., Sanchez, E., Santiago, B., Scarpine, V., Serrano, S., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Tucker, D. L., Weller, J., Wester, W., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DES, and UAM. Departamento de Física Teórica
- Subjects
SDSS ,Software_OPERATINGSYSTEMS ,ComputingMethodologies_SIMULATIONANDMODELING ,Cosmological parameters ,General Physics and Astronomy ,Astrophysics ,SPT ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Data_CODINGANDINFORMATIONTHEORY ,des ,Gravitation and Astrophysics ,01 natural sciences ,7. Clean energy ,Cosmology ,scale ,TRACER ,evolution ,0103 physical sciences ,Dark energy ,Hardware_INTEGRATEDCIRCUITS ,Dark matter ,010306 general physics ,Cluster analysis ,Scaling ,Weak gravitational lensing ,STFC ,Physics ,model ,COSMIC cancer database ,RCUK ,Física ,spt ,Mass Calibration ,ComputerSystemsOrganization_PROCESSORARCHITECTURES ,Galaxy ,Scale ,red galaxies ,13. Climate action ,Cosmic Shear ,mass calibration ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,sdss ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
To, C. et al. (DES Collaboration), We present the first joint analysis of cluster abundances and auto or cross-correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis (4×2pt+N) of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain ωm=0.305-0.038+0.055 and σ8=0.783-0.054+0.064. This result is consistent with constraints from the DES-Y1 galaxy clustering and weak lensing two-point correlation functions for the flat νΛCDM model. Consequently, we combine cluster abundances and all two-point correlations from across all three cosmic tracer fields (6×2pt+N) and find improved constraints on cosmological parameters as well as on the cluster observable-mass scaling relation. This analysis is an important advance in both optical cluster cosmology and multiprobe analyses of upcoming wide imaging surveys., This Letter has gone through internal review by the DES Collaboration. This work was supported in part by the U.S. Department of Energy contract to SLAC National Accelerator Laboratory, under Contract No. DE-AC02- 76SF00515 (C. H., D. G., R. W.) including a Panofsky Fellowship awarded to D. G. E. K. is supported by the Department of Energy Grant No. DE-SC0020247. E. R. is supported by DOE Grants No. DE-SC0015975 and No. DE-SC0009913, and by NSF Grant No. 2009401. E. R. also acknowledges funding from the Cottrell Scholar program of the Research Corporation for Science Advancement. H. W. is supported by NSF Grant No. AST-1516997. Some of the computing for this project was performed on the Sherlock cluster at Stanford. We would like to thank KIPAC, Stanford University, and the Stanford Research Computing Center for providing computational resources and support that contributed to these research results. Funding for the DES Projects has been provided by the DOE and NSF(USA), MEC/MICINN/ MINECO(Spain), STFC(UK), HEFCE(UK). NCSA (UIUC), KICP(U. Chicago), CCAPP(Ohio State), MIFPA(Texas A&M), CNPQ, FAPERJ, FINEP (Brazil), DFG(Germany), and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne Lab, UC Santa Cruz, University of Cambridge, CIEMAT-Madrid, University of Chicago, University College London, DES-Brazil Consortium, University of Edinburgh, ETH Zürich, Fermilab, University of Illinois, ICE (IEEC-CSIC), IFAE Barcelona, Lawrence Berkeley Lab, LMU München and the associated Excellence Cluster Universe, University of Michigan, NFS’s NOIRLab, University of Nottingham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Lab, Stanford University, University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSFs NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES Data Management System is supported by the NSF under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under Grants ESP2017-89838, PGC2018-094773, PGC2018- 102021, SEV-2016-0588, SEV-2016-0597, and MDM2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC Grant Agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq Grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
- Published
- 2021
- Full Text
- View/download PDF
25. Source Distributions of Cosmic Shear Surveys in Efficiency Space
- Author
-
Ian Harrison and Nicolas Tessore
- Subjects
photometric redshifts ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,lcsh:Astronomy ,gravitational lensing ,FOS: Physical sciences ,lcsh:Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Cosmology ,lcsh:QB1-991 ,lcsh:QB460-466 ,0103 physical sciences ,0105 earth and related environmental sciences ,Parametric statistics ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Small number ,Redshift ,Shear (geology) ,Outlier ,cosmic shear surveys ,cosmology ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We show that the lensing efficiency of cosmic shear generically has a simple shape, even in the case of a tomographic survey with badly behaved photometric redshifts. We argue that source distributions for cosmic shear can therefore be more effectively parametrised in ``efficiency space''. Using realistic simulations, we find that the true lensing efficiency of a current cosmic shear survey without disconnected outliers in the redshift distributions can be described to per cent accuracy with only two parameters, and the approach straightforwardly generalises to other parametric forms and surveys. The cosmic shear signal is thus largely insensitive to the details of the source distributions, and the features that matter can be summarised by a small number of suitable efficiency parameters. For the simulated survey, we show that prior knowledge at the 10% level, which is attainable e.g. from photometric redshifts, is enough to marginalise over the efficiency parameters without severely affecting the constraints on the cosmology parameters $\Omega_m$ and $\sigma_8$., Comment: 7 pages, 9 figures; notebook available at https://github.com/cosmiclens/arxiv-efficiency-space; v2: accepted by OJA
- Published
- 2020
- Full Text
- View/download PDF
26. KiDS+2dFLenS+GAMA
- Author
-
C. D. Leonard, Shahab Joudaki, Christian Wolf, Karl Glazebrook, Edwin A. Valentijn, Henk Hoekstra, C. Lidman, Konrad Kuijken, Maciej Bilicki, Marika Asgari, Thomas Erben, Chris Blake, Benjamin Joachimi, Jon Loveday, David Parkinson, Catherine Heymans, Joachim Harnois-Déraps, A. Choi, Alexandra Amon, Hendrik Hildebrandt, and Astronomy
- Subjects
observations [Surveys, cosmology] ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,LENSING SURVEY ,General relativity ,COSMIC SHEAR ,PARAMETER CONSTRAINTS ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,Large-scale structure of universe ,Astrophysics ,01 natural sciences ,Cosmology ,gravitational lensing: weak ,surveys ,0103 physical sciences ,LARGE-SCALE STRUCTURE ,GENERAL-RELATIVITY ,010303 astronomy & astrophysics ,QC ,Weak gravitational lensing ,Statistic ,QB ,media_common ,Physics ,surveys, cosmology: observations, large-scale structure of Universe ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Galaxy ,Universe ,Amplitude ,Space and Planetary Science ,cosmology: observations ,COVARIANCE MATRICES ,large-scale structure of Universe ,SURVEY DESIGN ,WEAK ,weak [Gravitational lensing] ,REDSHIFT-SPACE ,Astrophysics - Cosmology and Nongalactic Astrophysics ,GAMA GALAXY GROUPS - Abstract
We present a new measurement of $E_{\rm G}$, which combines measurements of weak gravitational lensing, real-space galaxy clustering and redshift space distortions. This statistic was proposed as a consistency test of General Relativity (GR) that is insensitive to linear, deterministic galaxy bias and the matter clustering amplitude. We combine deep imaging data from KiDS with overlapping spectroscopy from 2dFLenS, BOSS DR12 and GAMA and find $E_{\rm G}(\overline{z}=0.267)=0.43 \pm 0.13$ (GAMA), $E_{\rm G}(\overline{z}=0.305)=0.27 \pm 0.08$ (LOWZ+2dFLOZ) and $E_{\rm G}(\overline{z}=0.554)=0.26 \pm 0.07$ (CMASS+2dFHIZ). We demonstrate that the existing tension in the value of the matter density parameter hinders the robustness of this statistic as solely a test of GR. We find that our $E_{\rm G}$ measurements, as well as existing ones in the literature, favour a lower matter density cosmology than the Cosmic Microwave Background. For a flat $\Lambda$CDM Universe and assuming GR, we find $\Omega_{\rm m}(z=0)=0.25\pm0.03$. With this paper we publicly release the 2dFLenS dataset at: \url{http://2dflens.swin.edu.au}., Comment: 17 pages, 8 figures
- Published
- 2018
- Full Text
- View/download PDF
27. Dark Energy Survey Year 1 Results:Constraints on Intrinsic Alignments and their Colour Dependence from Galaxy Clustering and Weak Lensing
- Author
-
Juan Garcia-Bellido, J. Carretero, Elisabeth Krause, I. Sevilla-Noarbe, Erin Sheldon, David Brooks, J. P. Dietrich, Daniel Gruen, N. Kuropatkin, D. W. Gerdes, J. De Vicente, R. H. Schindler, R. L. C. Ogando, L. N. da Costa, E. Suchyta, Ramon Miquel, Marcos Lima, S. Serrano, Peter Doel, Peter Melchior, Francisco J. Castander, D. L. DePoy, Michael Troxel, M. A. G. Maia, Vinu Vikram, A. Carnero Rosell, M. March, A. A. Plazas, T. M. C. Abbott, Kyler Kuehn, Joshua A. Frieman, M. Carrasco Kind, Michael Schubnell, P. Larsen, Christopher J. Miller, Daniel Thomas, S. Samuroff, V. Scarpine, Tim Eifler, Flavia Sobreira, E. J. Sanchez, Jonathan Blazek, David J. James, W. G. Hartley, M. Gatti, Niall MacCrann, Enrique Gaztanaga, Devon L. Hollowood, C. D. Leonard, J. Prat, Sarah Bridle, Scott Dodelson, Pablo Fosalba, B. Flaugher, Carlos E. Cunha, Ben Hoyle, G. Gutierrez, Joe Zuntz, Shantanu Desai, H. T. Diehl, Mathew Smith, E. Bertin, C. Davis, J. Gschwend, Gary Bernstein, S. Allam, Robert A. Gruendl, Paul Martini, Felipe Menanteau, Gregory Tarle, K. Honscheid, J. Annis, Jennifer L. Marshall, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
luminous red galaxies ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmological parameters ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Cosmology ,contamination ,gravitational lensing: weak ,statistics [Galaxies] ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,0103 physical sciences ,cosmological parameters ,observations [Cosmology] ,010303 astronomy & astrophysics ,Weak gravitational lensing ,galaxies: statistics ,Astrophysics::Galaxy Astrophysics ,Photometric redshift ,Physics ,cosmological parameter constraints ,model ,Series (mathematics) ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Redshift ,Galaxy ,Amplitude ,kids-450 ,Space and Planetary Science ,cosmology: observations ,Dark energy ,impact ,astro-ph.CO ,High Energy Physics::Experiment ,digital sky survey ,Astrophysics::Earth and Planetary Astrophysics ,weak [Gravitational lensing] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We perform a joint analysis of intrinsic alignments and cosmology using tomographic weak lensing, galaxy clustering and galaxy-galaxy lensing measurements from Year 1 (Y1) of the Dark Energy Survey. We define early- and late-type subsamples, which are found to pass a series of systematics tests, including for spurious photometric redshift error and point spread function correlations. We analyse these split data alongside the fiducial mixed Y1 sample using a range of intrinsic alignment models. In a fiducial Nonlinear Alignment Model (NLA) analysis, assuming a flat \lcdm~cosmology, we find a significant difference in intrinsic alignment amplitude, with early-type galaxies favouring $A_\mathrm{IA} = 2.38^{+0.32}_{-0.31}$ and late-type galaxies consistent with no intrinsic alignments at $0.05^{+0.10}_{-0.09}$. We find weak evidence of a diminishing alignment amplitude at higher redshifts in the early-type sample. The analysis is repeated using a number of extended model spaces, including a physically motivated model that includes both tidal torquing and tidal alignment mechanisms. In multiprobe likelihood chains in which cosmology, intrinsic alignments in both galaxy samples and all other relevant systematics are varied simultaneously, we find the tidal alignment and tidal torquing parts of the intrinsic alignment signal have amplitudes $A_1 = 2.66 ^{+0.67}_{-0.66}$, $A_2=-2.94^{+1.94}_{-1.83}$, respectively, for early-type galaxies and $A_1 = 0.62 ^{+0.41}_{-0.41}$, $A_2 = -2.26^{+1.30}_{-1.16}$ for late-type galaxies. In the full (mixed) Y1 sample the best constraints are $A_1 = 0.70 ^{+0.41}_{-0.38}$, $A_2 = -1.36 ^{+1.08}_{-1.41}$. For all galaxy splits and IA models considered, we report cosmological parameter constraints that are consistent with the results of Troxel et al. (2017) and Dark Energy Survey Collaboration (2017)., 31 pages, 23 figures; accepted by MNRAS
- Published
- 2019
- Full Text
- View/download PDF
28. Euclid: Reconstruction of Weak Lensing mass maps for non-Gaussianity studies
- Author
-
S. Pires, V. Vandenbussche, V. Kansal, R. Bender, L. Blot, D. Bonino, A. Boucaud, J. Brinchmann, V. Capobianco, J. Carretero, M. Castellano, S. Cavuoti, R. Clédassou, G. Congedo, L. Conversi, L. Corcione, F. Dubath, P. Fosalba, M. Frailis, E. Franceschi, M. Fumana, F. Grupp, F. Hormuth, S. Kermiche, M. Knabenhans, R. Kohley, B. Kubik, M. Kunz, S. Ligori, P. B. Lilje, I. Lloro, E. Maiorano, O. Marggraf, R. Massey, G. Meylan, C. Padilla, S. Paltani, F. Pasian, M. Poncet, D. Potter, F. Raison, J. Rhodes, M. Roncarelli, R. Saglia, P. Schneider, A. Secroun, S. Serrano, J. Stadel, P. Tallada Crespí, I. Tereno, R. Toledo-Moreo, Y. Wang, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National d'Études Spatiales [Toulouse] (CNES), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, EUCLID, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Ludwig-Maximilians-Universität München (LMU), Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, INAF - Osservatorio Astrofisico di Torino (OATo), Istituto Nazionale di Astrofisica (INAF), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institute for Computational science, Universität Zürich [Zürich] = University of Zurich (UZH), Université de Genève = University of Geneva (UNIGE), Euclid Consortium, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), University of Geneva [Switzerland], Pires, S., Vandenbussche, V., Kansal, V., Bender, R., Blot, L., Bonino, D., Boucaud, A., Brinchmann, J., Capobianco, V., Carretero, J., Castellano, M., Cavuoti, S., Cledassou, R., Congedo, G., Conversi, L., Corcione, L., Dubath, F., Fosalba, P., Frailis, M., Franceschi, E., Fumana, M., Grupp, F., Hormuth, F., Kermiche, S., Knabenhans, M., Kohley, R., Kubik, B., Kunz, M., Ligori, S., Lilje, P. B., Lloro, I., Maiorano, E., Marggraf, O., Massey, R., Meylan, G., Padilla, C., Paltani, S., Pasian, F., Poncet, M., Potter, D., Raison, F., Rhodes, J., Roncarelli, M., Saglia, R., Schneider, P., Secroun, A., Serrano, S., Stadel, J., Tallada Crespi, P., Tereno, I., Toledo-Moreo, R., Wang, Y., European Commission, Academy of Finland, Agenzia Spaziale Italiana, Belgian Science Policy Office, Canadian Euclid Consortium, Centre National D'Etudes Spatiales (France), German Centre for Air and Space Travel, Danish Space Research Institute, Fundação para a Ciência e a Tecnologia (Portugal), Ministerio de Economía y Competitividad (España), National Aeronautics and Space Administration (US), Netherlands Research School for Astronomy, Norwegian Space Agency, Romanian Space Agency, State Secretariat for Education, Research and Innovation (Switzerland), UK Space Agency, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Structure formation ,halo ,Data field ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,dark matter ,inversion ,gravitational lensing: weak ,Non-Gaussianity ,0103 physical sciences ,Dark matter ,Statistical physics ,data analysis [Methods] ,peak statistics ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Physics ,Line-of-sight ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Observable ,universe ,methods: data analysis ,Galaxy ,dark-matter ,Space and Planetary Science ,cosmological constraints ,Dark energy ,astro-ph.CO ,weak [Gravitational lensing] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Weak lensing, which is the deflection of light by matter along the line of sight, has proven to be an efficient method for constraining models of structure formation and reveal the nature of dark energy. So far, most weak-lensing studies have focused on the shear field that can be measured directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak-lensing surveys such as Euclid, convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While it carry the same information, the lensing signal is more compressed in the convergence maps than in the shear field. This simplifies otherwise computationally expensive analyses, for instance, non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic effects caused by holes in the data field, field borders, shape noise, and the fact that the shear is not a direct observable (reduced shear). We present the two mass-inversion methods that are included in the official Euclid data-processing pipeline: the standard Kaiser & Squires method (KS), and a new mass-inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS method and includes corrections for mass-mapping systematic effects. The results of the KS+ method are compared to the original implementation of the KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction by comparing the two-point correlation functions and third- and fourth-order moments obtained from shear and convergence maps, and we analyse each systematic effect independently and simultaneously. We show that the KS+ method substantially reduces the errors on the two-point correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the two-point correlation of the convergence maps are reduced by a factor of about 5, while the errors on the third- and fourth-order moments are reduced by factors of about 2 and 10, respectively., The Euclid Consortium acknowledges the European Space Agency and the support of a number of agencies and institutes that have supported the development of Euclid. A detailed complete list is available on the Euclid web site (http://www.euclid-ec.org). In particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft-and Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciênca e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, the Netherlandse Onderzoekschool Voor Astronomie, the Norvegian Space Center, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency.
- Published
- 2019
- Full Text
- View/download PDF
29. Core Cosmology Library:Precision Cosmological Predictions for LSST
- Author
-
J. Ellison, Joe Zuntz, Shahab Joudaki, Michal Vrastil, Thomas McClintock, Matthew Kirby, Tilman Troester, François Lanusse, Elisabeth Krause, Husni Almoubayyed, Jérémy Neveu, D. Kirkby, Anze Slosar, David Alonso, Tim Eifler, Sukhdeep Singh, Jonathan Blazek, Philip Bull, C. Danielle Leonard, Alexander Mead, Renée Hlozek, Zilong Du, Antonio Villarreal, Stéphane Plaszczynski, Erika L. Wagoner, Nora Elisa Chisari, J. E. Campagne, Christiane S. Lorenz, Javier Sanchez, Mustapha Ishak, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), LSST Dark Energy Science, and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
analytic model ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,parameter constraints ,Large Synoptic Survey Telescope ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,neutrino mass ,Cosmology ,large-scale bias ,background anisotropies ,cosmology: theory ,0103 physical sciences ,Halo effect ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,halo mass function ,baryonic feedback ,dark energy ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Photometric redshift ,Physics ,large-scale structure of universe ,COSMIC cancer database ,010308 nuclear & particles physics ,joint analysis ,Halo mass function ,Astronomy and Astrophysics ,Redshift ,Galaxy ,Space and Planetary Science ,astro-ph.CO ,matter power spectrum ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmic shear ,Astrophysics - Cosmology and Nongalactic Astrophysics ,astro-ph.IM - Abstract
The Core Cosmology Library (CCL) provides routines to compute basic cosmological observables to a high degree of accuracy, which have been verified with an extensive suite of validation tests. Predictions are provided for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions available in the literature. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. A rigorous validation procedure, based on comparisons between CCL and independent software packages, allows us to establish a well-defined numerical accuracy for each predicted quantity. As a result, predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are demonstrated to be within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is an open source software package written in C, with a python interface and publicly available at https://github.com/LSSTDESC/CCL., Comment: 38 pages, 18 figures, matches ApJS accepted version
- Published
- 2019
- Full Text
- View/download PDF
30. Propagating Residual Biases in Cosmic Shear Power Spectra
- Author
-
P. Paykari, Thomas D. Kitching, Mark Cropper, and Henk Hoekstra
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,bias ,COSMIC cancer database ,Cross-correlation ,lcsh:Astronomy ,Multiplicative function ,FOS: Physical sciences ,Spectral density ,lcsh:Astrophysics ,power spectrum ,weak gravitational lensing ,Residual ,lcsh:QB1-991 ,Shear (geology) ,lcsh:QB460-466 ,large-scale structure of the universe ,Statistical physics ,multipole expansion ,Multipole expansion ,cosmology ,cosmic shear ,Weak gravitational lensing ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper we derive a full expression for the propagation of multiplicative and additive shape measurement biases into the cosmic shear power spectrum. In doing so we identify several new terms that are associated with selection effects, as well as cross-correlation terms between the multiplicative and additive biases and the shear field. The computation of the resulting bias in the shear power spectrum scales as the fifth power of the maximum multipole considered. Consequently the calculation is unfeasible for large l-modes, and the only tractable way to assess the full impact of shape measurement biases on cosmic shear power spectrum is through forward modelling of the effects. To linear order in bias parameters the shear power spectrum is only affected by the mean of the multiplicative bias field over a survey and the cross correlation between the additive bias field and the shear field. If the mean multiplicative bias is zero then second order convolutive terms are expected to be orders of magnitude smaller., 10 pages, accepted to the Open Journal of Astrophysics
- Published
- 2019
31. The fourth data release of the Kilo-Degree Survey: ugri imaging and nine-band optical-IR photometry over 1000 square degrees
- Author
-
Crescenzo Tortora, Konrad Kuijken, G. A. Verdoes Kleijn, Nicola R. Napolitano, Huanyuan Shan, Benjamin Giblin, William J. Sutherland, Aniello Grado, Malte Tewes, Andrej Dvornik, Lance Miller, Mario Radovich, Edwin A. Valentijn, Peter Schneider, Catherine Heymans, T. Erben, Angus H. Wright, M. Paolilo, J. T. A. de Jong, Henk Hoekstra, Fedor Getman, Maciej Bilicki, Hendrik Hildebrandt, Astronomy, Intelligent Systems, ITA, GBR, DEU, and NLD
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC SHEAR ,astro-ph.GA ,media_common.quotation_subject ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,REDSHIFTS ,01 natural sciences ,law.invention ,Telescope ,Photometry (optics) ,surveys ,law ,0103 physical sciences ,LENSING PEAK STATISTICS ,MASSES ,010303 astronomy & astrophysics ,KIDS-450 COSMOLOGICAL CONSTRAINTS ,Weak gravitational lensing ,media_common ,VLT Survey Telescope ,Physics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,galaxies: general ,Galaxy ,Redshift ,Space and Planetary Science ,Sky ,Astrophysics of Galaxies (astro-ph.GA) ,astro-ph.CO ,INFERENCE ,large-scale structure of Universe ,WEAK ,Astrophysics - Cosmology and Nongalactic Astrophysics ,GAMA GALAXY GROUPS - Abstract
The Kilo-Degree Survey (KiDS) is an ongoing optical wide-field imaging survey with the OmegaCAM camera at the VLT Survey Telescope, specifically designed for measuring weak gravitational lensing by galaxies and large-scale structure. When completed it will consist of 1350 square degrees imaged in four filters (ugri). Here we present the fourth public data release which more than doubles the area of sky covered by data release 3. We also include aperture-matched ZYJHKs photometry from our partner VIKING survey on the VISTA telescope in the photometry catalogue. We illustrate the data quality and describe the catalogue content. Two dedicated pipelines are used for the production of the optical data. The Astro-WISE information system is used for the production of co-added images in the four survey bands, while a separate reduction of the r-band images using the theli pipeline is used to provide a source catalogue suitable for the core weak lensing science case. All data have been re-reduced for this data release using the latest versions of the pipelines. The VIKING photometry is obtained as forced photometry on the theli sources, using a re-reduction of the VIKING data that starts from the VISTA pawprints. Modifications to the pipelines with respect to earlier releases are described in detail. The photometry is calibrated to the Gaia DR2 G band using stellar locus regression. In this data release a total of 1006 square-degree survey tiles with stacked ugri images are made available, accompanied by weight maps, masks, and single-band source lists. We also provide a multi-band catalogue based on r-band detections, including homogenized photometry and photometric redshifts, for the whole dataset. Mean limiting magnitudes (5 sigma in a 2" aperture) are 24.23, 25.12, 25.02, 23.68 in ugri, respectively, and the mean r-band seeing is 0.70"., Comment: 25 pages, accepted for publication in Astronomy and Astrophysics. For access to the images and catalogues see http://kids.strw.leidenuniv.nl/DR4/
- Published
- 2019
- Full Text
- View/download PDF
32. KiDS-1000 catalogue: Weak gravitational lensing shear measurements
- Author
-
Huanyuan Shan, Angus H. Wright, Peter Schneider, Benjamin Giblin, Thomas Erben, Chieh-An Lin, Benjamin Joachimi, Tilman Tröster, Lance Miller, Konrad Kuijken, Nicola R. Napolitano, Jan Luca van den Busch, Arun Kannawadi, Jelte T. A. de Jong, Andrej Dvornik, Catherine Heymans, Marika Asgari, Chris Blake, Edwin A. Valentijn, Hendrik Hildebrandt, Maciej Bilicki, Fedor Getman, Henk Hoekstra, and Astronomy
- Subjects
Point spread function ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC SHEAR ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,ADVANCED CAMERA ,gravitational lensing: weak ,COSMOLOGICAL PARAMETER CONSTRAINTS ,0103 physical sciences ,Weak ,cosmological parameters ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Weak gravitational lensing ,Galaxy cluster ,Photometric redshift ,Gravitational Lensing ,Physics ,CHARGE-TRANSFER INEFFICIENCY ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,HUBBLE-SPACE-TELESCOPE ,Galaxy ,Redshift ,POINT-SPREAD FUNCTION ,CHALLENGE LIGHTCONE SIMULATION ,Gravitational lens ,Space and Planetary Science ,astro-ph.CO ,Dark energy ,DARK ENERGY ,large-scale structure of Universe ,Cosmology and Nongalactic Astrophysics ,GALAXY CLUSTERS ,NONLINEAR CLUSTER INVERSION ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present weak lensing shear catalogues from the fourth data release of the Kilo-Degree Survey, KiDS-1000, spanning 1006 square degrees of deep and high-resolution imaging. Our `gold-sample' of galaxies, with well-calibrated photometric redshift distributions, consists of 21 million galaxies with an effective number density of $6.17$ galaxies per square arcminute. We quantify the accuracy of the spatial, temporal, and flux-dependent point-spread function (PSF) model, verifying that the model meets our requirements to induce less than a $0.1\sigma$ change in the inferred cosmic shear constraints on the clustering cosmological parameter $S_8 = \sigma_8\sqrt{\Omega_{\rm m}/0.3}$. Through a series of two-point null-tests, we validate the shear estimates, finding no evidence for significant non-lensing B-mode distortions in the data. The PSF residuals are detected in the highest-redshift bins, originating from object selection and/or weight bias. The amplitude is, however, shown to be sufficiently low and within our stringent requirements. With a shear-ratio null-test, we verify the expected redshift scaling of the galaxy-galaxy lensing signal around luminous red galaxies. We conclude that the joint KiDS-1000 shear and photometric redshift calibration is sufficiently robust for combined-probe gravitational lensing and spectroscopic clustering analyses., Comment: 24 pages, 11 figures, version accepted by A&A. The KiDS-1000 data products are available for download at http://kids.strw.leidenuniv.nl/DR4/lensing.php. This cosmology data release includes open source software, the shear-photo-z catalogue, the cosmic shear and 3x2pt data vectors and covariances, and posteriors in the form of Multinest chains
- Published
- 2021
- Full Text
- View/download PDF
33. Cluster mass profile reconstruction with size and flux magnification on theHSTSTAGES survey
- Author
-
Catherine Heymans, Christopher A. J. Duncan, Alan Heavens, Benjamin Joachimi, and Imperial College Trust
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC SHEAR ,Dark matter ,COMPLEMENTARITY ,FOS: Physical sciences ,Magnification ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Astronomy & Astrophysics ,Bayesian inference ,01 natural sciences ,dark matter ,Virial theorem ,gravitational lensing: weak ,Spitzer Space Telescope ,LARGE-SCALE STRUCTURE ,0103 physical sciences ,DARK-MATTER ,Galaxy formation and evolution ,PHOTOMETRIC REDSHIFTS ,010303 astronomy & astrophysics ,Weak gravitational lensing ,GRAVITATIONAL DISTORTIONS ,Physics ,Science & Technology ,WEAK LENSING ANALYSIS ,010308 nuclear & particles physics ,Astronomy ,Astronomy and Astrophysics ,methods: data analysis ,GALAXY SHAPE MEASUREMENT ,0201 Astronomical And Space Sciences ,galaxies: clusters: general ,Space and Planetary Science ,FUNDAMENTAL PLANE ,Physical Sciences ,astro-ph.CO ,COMBO-17 ,Astrophysics::Earth and Planetary Astrophysics ,Fundamental plane (elliptical galaxies) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST-STAGES survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45% to 110% of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor $0.77 \pm 0.18$ lower than the shear measurements., Accepted to MNRAS
- Published
- 2016
- Full Text
- View/download PDF
34. KiDS-i-800: comparing weak gravitational lensing measurements from same-sky surveys
- Author
-
N. Irisarri, Shahab Joudaki, Peter Schneider, A. Choi, J. T. A. de Jong, Konrad Kuijken, E. van Uitert, Dominik Klaes, Karl Glazebrook, Lance Miller, Alexandra Amon, Nicola R. Napolitano, Christian Wolf, Arun Kannawadi, Benjamin Joachimi, Christopher B. Morrison, M. Viola, Catherine Heymans, Chris Blake, Hendrik Hildebrandt, David Parkinson, Thomas Erben, Henk Hoekstra, C. Lidman, and Astronomy
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,CFHTLENS ,COSMIC SHEAR ,media_common.quotation_subject ,Strong gravitational lensing ,FOS: Physical sciences ,Astrophysics ,Correlation function (astronomy) ,01 natural sciences ,Cosmology ,gravitational lensing: weak ,surveys ,0103 physical sciences ,Range (statistics) ,PROGRAM ,010303 astronomy & astrophysics ,PHOTOMETRIC REDSHIFTS ,Weak gravitational lensing ,media_common ,Physics ,CROSS-CORRELATIONS ,010308 nuclear & particles physics ,Astronomy ,CONSTRAINTS ,Astronomy and Astrophysics ,Redshift ,Galaxy ,galaxies: photometry ,Space and Planetary Science ,Sky ,cosmology: observations ,COSMOLOGY ,SURVEY DESIGN ,REDSHIFT DISTRIBUTIONS ,Astrophysics - Cosmology and Nongalactic Astrophysics ,GAMA GALAXY GROUPS - Abstract
We present a weak gravitational lensing analysis of 815 square degree of $i$-band imaging from the Kilo-Degree Survey (KiDS-$i$-800). In contrast to the deep $r$-band observations, which take priority during excellent seeing conditions and form the primary KiDS dataset (KiDS-$r$-450), the complementary yet shallower KiDS-$i$-800 spans a wide range of observing conditions. The overlapping KiDS-$i$-800 and KiDS-$r$-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis, we introduce two new `null' tests. The `nulled' two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-$i$-800 and KiDS-$r$-450 shear measurements agree at the level of $1 \pm 4$\%. We use five galaxy lens samples to determine a `nulled' galaxy-galaxy lensing signal from the full KiDS-$i$-800 and KiDS-$r$-450 surveys and find that the measurements agree to $7 \pm 5$\% when the KiDS-$i$-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey., 24 pages, 20 figures. Submitted to MNRAS. Comments welcome
- Published
- 2018
- Full Text
- View/download PDF
35. Density split statistics : cosmological constraints from counts and lensing in cells in DES Y1 and SDSS data
- Author
-
Sobreira, Flávia, 1982 and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Galaxies - Formation ,Inferência (Lógica) ,Energia escura (Astronomia) ,Redshift ,Cosmic shear ,Deslocamento vermelho ,Massa (Física) ,Inference (Logic) ,Parameter constraints ,Artigo original ,Galáxias - Formação ,Mass (Physics) ,Dark energy (Astronomy) ,Cross correlation - Abstract
Agradecimentos: D. G. thanks Yao-Yuan Mao, Cora Uhlemann, Zvonimir Vlah, and numerous members of the DES WL, LSS and Theory working groups for helpful discussions. Support for D. G. was provided by NASA through Einstein Postdoctoral Fellowship Grant No. PF5-160138 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. O. F. acknowledges funding by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG) and the DFG Cluster of Excellence 'Origin and Structure of the Universe.' Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grant No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2015-71825, No. ESP2015-88861, No. FPA2015-68048, No. SEV-2012-0234, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013) including ERC Grant agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through Project No. CE110001020. S. H. acknowledges support by the DFG cluster of excellence 'Origin and Structure of the Universe' (http://www.universe-cluster.de). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This paper has gone through internal review by the DES collaboration Abstract: We derive cosmological constraints from the probability distribution function (PDF) of evolved large-scale matter density fluctuations. We do this by splitting lines of sight by density based on their count of tracer galaxies, and by measuring both gravitational shear around and counts-in-cells in overdense and underdense lines of sight, in Dark Energy Survey (DES) First Year and Sloan Digital Sky Survey (SDSS) data. Our analysis uses a perturbation theory model [O. Friedrich et al., Phys. Rev. D 98, 023508 (2018)] and is validated using N-body simulation realizations and log-normal mocks. It allows us to constrain cosmology, bias and stochasticity of galaxies with respect to matter density and, in addition, the skewness of the matter density field. From a Bayesian model comparison, we find that the data weakly prefer a connection of galaxies and matter that is stochastic beyond Poisson fluctuations on
- Published
- 2018
36. Density split statistics : joint model of counts and lensing in cells
- Author
-
Sobreira, Flávia, 1982 and UNIVERSIDADE ESTADUAL DE CAMPINAS
- Subjects
Peak statistics ,Cosmologia ,Initial conditions ,Energia escura (Astronomia) ,Cosmic shear ,Energia escura (Atronomia) ,Estrutura em larga escala (Astronomia) ,Cosmology ,Science verification data ,Perturbação (Dinâmica quântica) ,Perturbation (Quantum dynamics) ,Non gaussianity ,Artigo original ,Galaxy halo masses ,Large scale structure (Astronomy) ,Dark energy (Astronomy) - Abstract
Agradecimentos: O. F. was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG). Support for D. G. was provided by NASA through Einstein Postdoctoral Fellowship Grant No. PF5-160138 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract No. NAS8-03060. O. F. and S. H. acknowledge support by the DFG cluster of excellence 'Origin and Structure of the Universe' (www.universe-cluster.de). Part of our computations have been carried out on the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP). This paper has gone through internal review by the DES collaboration. We want to thank all the members of the DES WL, LSS and Theory working groups that have contributed with helpful comments and discussions. We also want to thank the anonymous journal referee for very helpful comments. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The DES data management system is supported by the National Science Foundation under Grant No. AST-1138766. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. The DES participants from Spanish institutions are partially supported by MINECO under Grants No. AYA2012-39559, No. ESP2013-48274, No. FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC Grant Agreements No. 240672, No. 291329, and No. 306478. D. G. is an Einstein Fellow Abstract: We present density split statistics, a framework that studies lensing and counts-in-cells as a function of foreground galaxy density, thereby providing a large-scale measurement of both 2-point and 3-point statistics. Our method extends our earlier work on trough lensing and is summarized as follows: given a foreground (low redshift) population of galaxies, we divide the sky into subareas of equal size but distinct galaxy density. We then measure lensing around uniformly spaced points separately in each of these subareas, as well as counts-in-cells statistics (CiC). The lensing signals trace the matter density contrast around regions of fixed galaxy density. Through the CiC measurements this can be related to the density profile around regions of fixed matter density. Together, these measurements constitute a powerful probe of cosmology, the skewness of the density field and the connection of galaxies and matter. In this paper we show how to model both the density split lensing signal and CiC from basic ingredients: a non-linear power spectrum, clustering hierarchy coefficients from perturbation theory and a parametric model for galaxy bias and shot-noise. Using N-body simulations, we demonstrate that this model is sufficiently accurate for a cosmological analysis on year 1 data from the Dark Energy Survey FINANCIADORA DE ESTUDOS E PROJETOS - FINEP FUNDAÇÃO CARLOS CHAGAS FILHO DE AMPARO À PESQUISA DO ESTADO DO RIO DE JANEIRO - FAPERJ CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES - MCTI Aberto
- Published
- 2018
37. A way forward for Cosmic Shear: Monte-Carlo Control Loops.
- Author
-
Refregier, Alexandre and Amara, Adam
- Abstract
Abstract: Weak lensing by large scale structure or ‘cosmic shear’ is a potentially powerful cosmological probe to shed new light on Dark Matter, Dark Energy and Modified Gravity. It is based on the weak distortions induced by large-scale structures on the observed shapes of distant galaxies through gravitational lensing. While the potentials of this purely gravitational effect are great, results from this technique have been hampered because the measurement of this weak effect is difficult and limited by systematics effects. In particular, a demanding step is the measurement of the weak lensing shear from wide field CCD images of galaxies. We describe the origin of the problem and propose a way forward for cosmic shear. Our proposed approach is based on Monte-Carlo Control Loops and draws upon methods widely used in particle physics and engineering. We describe the control loop scheme and show how it provides a calibration method based on fast image simulations tuned to reproduce the statistical properties of a specific cosmic shear data set. Through a series of iterative loops and diagnostic tests, the Monte Carlo image simulations are made robust to perturbations on modeling input parameters and thus to systematic effects. We discuss how this approach can make the problem tractable and unleash to full potential of cosmic shear for cosmology. [Copyright &y& Elsevier]
- Published
- 2014
- Full Text
- View/download PDF
38. Contaminating Weak Lensing Cosmology with Active Galactic Nuclei
- Author
-
Mccallum, Nialh, HARRISON, IAN I, Harrison, Ian, and Brown, Michael
- Subjects
Radio Wavelengths ,Bias ,Astrophysics::High Energy Astrophysical Phenomena ,Misidentification ,Cosmic Shear ,Active Galactic Nuclei ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Weak Gravitational Lensing ,Astrophysics::Galaxy Astrophysics ,Cosmology - Abstract
With the arrival of the SKA the dawn of a new era of weak gravitational lensing observations is imminent, with scope to probe cosmic shear fields at radio wavelengths to a precision competitive with optical results. Cosmic shear measurements are highly susceptible to bias, with one possible contributor to this bias in the radio regime being AGN type galaxies whose complex shapes are not well constrained by conventional models.Extraction methods are being created for the purpose of removing AGN galaxies from the radio source samples used in radio weak lensing. However, under certain circumstances, such as the case where the PSF is larger than the galaxy size, the multicomponent structure of the AGN galaxy may be obscured, resulting in the extraction techniques failing to recognise it as an AGN galaxy and misidentifying it as a SF galaxy. This will lead to a misidentification bias dependent on the ability of the extraction method i.e. dependent on the fraction of AGN type galaxies successfully removed. It is this misidentification bias that has been examined in this work.It has been determined for the additive bias that the requirements of the SKA, of c < 0.0011, c < 0.00076, and c < 0.00035 for the SKA1-early, SKA1, and SKA2 stages respectively are consistently met for all fractions of AGN galaxies removed from the sample, at all SNR levels. This shows that the additive component of the misidentification bias will not be a problem in radio weak lensing surveys.For the multiplicative bias the SKA requirements that need to be met are m < 0.011, m < 0.0058, and m < 0.0012 for the SKA1-early, SKA1, and SKA2 stages respectively. It has been found that successful removal of 70% of the AGN galaxies from a radio sample is sufficient to meet the SKA1-early requirement, 87% to meet the SKA1 requirement, and 97% to meet the SKA2 requirement. It has been shown that the multiplicative component of the misidentification bias is of great significance in radio weak lensing surveys. The AGN galaxy extraction codes developed must be able to successfully remove 70%, 87%, and 97% of the AGN galaxies from a radio sample in order to meet the bias requirements of the SKA1-early, SKA1, and SKA2 stages of the SKA respectively.As such the contamination of weak lensing cosmology by AGN is certainly an important effect to consider when proceeding with weak lensing observations in the radio regime.
- Published
- 2017
39. Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference
- Author
-
Justin Alsing, Andrew H. Jaffe, and Alan Heavens
- Subjects
Particle physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC SHEAR ,PLANCK CMB ,GALAXY SURVEYS ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,01 natural sciences ,Omega ,LIKELIHOOD ,Minimal model ,symbols.namesake ,gravitational lensing: weak ,0103 physical sciences ,MICROWAVE BACKGROUND DATA ,cosmological parameters ,Planck ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Photometric redshift ,Physics ,methods: statistical ,Science & Technology ,010308 nuclear & particles physics ,CONSTRAINTS ,Astronomy and Astrophysics ,DISCORDANCE ,Redshift ,0201 Astronomical And Space Sciences ,TELESCOPE LENSING SURVEY ,Space and Planetary Science ,Physical Sciences ,symbols ,large-scale structure of Universe ,REDSHIFT DISTRIBUTIONS ,Neutrino ,APPROXIMATION ,Free parameter ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We apply two Bayesian hierarchical inference schemes to infer shear power spectra, shear maps and cosmological parameters from the CFHTLenS weak lensing survey - the first application of this method to data. In the first approach, we sample the joint posterior distribution of the shear maps and power spectra by Gibbs sampling, with minimal model assumptions. In the second approach, we sample the joint posterior of the shear maps and cosmological parameters, providing a new, accurate and principled approach to cosmological parameter inference from cosmic shear data. As a first demonstration on data we perform a 2-bin tomographic analysis to constrain cosmological parameters and investigate the possibility of photometric redshift bias in the CFHTLenS data. Under the baseline $\Lambda$CDM model we constrain $S_8 = \sigma_8(\Omega_\mathrm{m}/0.3)^{0.5} = 0.67 ^{\scriptscriptstyle+ 0.03 }_{\scriptscriptstyle- 0.03 }$ $(68\%)$, consistent with previous CFHTLenS analysis but in tension with Planck. Adding neutrino mass as a free parameter we are able to constrain $\sum m_\nu < 4.6\mathrm{eV}$ (95%) using CFHTLenS data alone. Including a linear redshift dependent photo-$z$ bias $\Delta z = p_2(z - p_1)$, we find $p_1=-0.25 ^{\scriptscriptstyle+ 0.53 }_{\scriptscriptstyle- 0.60 }$ and $p_2 = -0.15 ^{\scriptscriptstyle+ 0.17 }_{\scriptscriptstyle- 0.15 }$, and tension with Planck is only alleviated under very conservative prior assumptions. Neither the non-minimal neutrino mass or photo-$z$ bias models are significantly preferred by the CFHTLenS (2-bin tomography) data., Comment: Matches accepted version
- Published
- 2016
40. A way forward for Cosmic Shear: Monte-Carlo Control Loops
- Author
-
Alexandre Refregier and Adam Amara
- Subjects
Physics ,Simulations ,COSMIC cancer database ,Statistical methods ,Dark matter ,Gravitational lensing formalism ,Monte Carlo method ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmic shear ,Cosmology ,Classical mechanics ,Gravitational lens ,Space and Planetary Science ,Dark energy ,Statistical physics ,Weak gravitational lensing - Abstract
Weak lensing by large scale structure or ‘cosmic shear’ is a potentially powerful cosmological probe to shed new light on Dark Matter, Dark Energy and Modified Gravity. It is based on the weak distortions induced by large-scale structures on the observed shapes of distant galaxies through gravitational lensing. While the potentials of this purely gravitational effect are great, results from this technique have been hampered because the measurement of this weak effect is difficult and limited by systematics effects. In particular, a demanding step is the measurement of the weak lensing shear from wide field CCD images of galaxies. We describe the origin of the problem and propose a way forward for cosmic shear. Our proposed approach is based on Monte-Carlo Control Loops and draws upon methods widely used in particle physics and engineering. We describe the control loop scheme and show how it provides a calibration method based on fast image simulations tuned to reproduce the statistical properties of a specific cosmic shear data set. Through a series of iterative loops and diagnostic tests, the Monte Carlo image simulations are made robust to perturbations on modeling input parameters and thus to systematic effects. We discuss how this approach can make the problem tractable and unleash to full potential of cosmic shear for cosmology.
- Published
- 2014
- Full Text
- View/download PDF
41. Constraints on sigma(8) from galaxy clustering in N-body simulations and semi-analytic models
- Subjects
REDSHIFT SURVEY ,COSMIC SHEAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,dark matter ,cosmology : theory ,COLD DARK-MATTER ,HALO OCCUPATION DISTRIBUTION ,COSMOLOGICAL IMPLICATIONS ,BIAS ,SATELLITE GALAXIES ,LARGE-SCALE STRUCTURE ,PROBE WMAP OBSERVATIONS ,LUMINOSITY DEPENDENCE ,galaxies : formation ,galaxies : haloes ,Astrophysics::Galaxy Astrophysics - Abstract
We generate mock galaxy catalogues for a grid of different cosmologies, using rescaled N-body simulations in tandem with a semi-analytic model run using consistent parameters. Because we predict the galaxy bias, rather than fitting it as a nuisance parameter, we obtain an almost pure constraint on sigma(8) by comparing the projected two-point correlation function we obtain to that from the Sloan Digital Sky Survey (SDSS). A systematic error arises because different semi-analytic modelling assumptions allow us to fit the r-band luminosity function equally well. Combining our estimate of the error from this source with the statistical error, we find sigma(8) = 0.97 +/- 0.06. We obtain consistent results if we use galaxy samples with a different magnitude threshold, or if we select galaxies by b(J)-band rather than r-band luminosity and compare to data from the 2dF Galaxy Redshift Survey (2dFGRS). Our estimate for sigma(8) is higher than that obtained for other analyses of galaxy data alone, and we attempt to find the source of this difference. We note that in any case, galaxy clustering data provide a very stringent constraint on galaxy formation models.
- Published
- 2007
- Full Text
- View/download PDF
42. Lensing by galaxies in CNOC2 fields
- Author
-
Marijn Franx, Henk Hoekstra, Howard K. C. Yee, Konrad Kuijken, Raymond G. Carlberg, Kapteyn Astronomical Institute, and Astronomy
- Subjects
Field (physics) ,COSMIC SHEAR ,POWER SPECTRUM ,DISTANT GALAXIES ,DEEP FIELD ,Dark matter ,gravitational lensing ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,dark matter ,LARGE-SCALE STRUCTURE ,William Herschel Telescope ,DARK-MATTER ,Astrophysics::Galaxy Astrophysics ,Physics ,Astrophysics (astro-ph) ,Sigma ,Velocity dispersion ,Astronomy and Astrophysics ,HUBBLE-SPACE-TELESCOPE ,Redshift ,Galaxy ,cosmology : observations ,Space and Planetary Science ,CLUSTER SURVEY FIELDS ,Halo ,WEAK ,SPIRAL GALAXIES - Abstract
We have observed two blank fields of approximately 30 by 23 arcminutes using the William Herschel Telescope. The fields have been studied as part of the CNOC2 survey, and spectroscopic redshifts are available for 1125 galaxies in the two fields. We measured the lensing signal caused by large scale structure, and found that the result is consistent with current, more accurate measurements. We study the galaxy-galaxy lensing signal of three overlapping samples of lenses, and detect a significant signal in all cases. The estimates for the velocity dispersion of an L* galaxy agree well for the various samples. The best fit singular isothermal sphere model to the ensemble averaged tangential distortion around the galaxies with redshifts yields a velocity dispersion of \sigma_*=130^{+15}_{-17} km/s, in good agreement with other studies. We use a maximum likelihood analysis, where a parameterized mass model is compared to the data, to study the extent of galaxy dark matter halos. Making use of all available data, we find \sigma_*=111\pm12 km/s (68.3% confidence) for a truncated isothermal sphere model in which all galaxies have the same mass-to-light ratio. The value of the truncation parameter is not constrained that well, and we find s_*=260^{+124}_{-73} h^{-1} kpc (68.3% confidence The galaxy-galaxy lensing analysis allows us to estimate the average mass-to-light ratio of the field, which can be used to estimate \Omega_m. The current result, however, depends strongly on the assumed scaling relation for s., Comment: accepted for publication in MNRAS 15 pages
- Published
- 2003
43. Weak Lensing with Sizes, Magnitudes and Shapes
- Author
-
Justin Alsing, Andrew H. Jaffe, Donnacha Kirk, Alan Heavens, Imperial College Trust, and Science and Technology Facilities Council (STFC)
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,ALIGNMENTS ,COSMIC SHEAR ,media_common.quotation_subject ,INTRINSIC ELLIPTICITY CORRELATION ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,LUMINOUS RED GALAXIES ,gravitational lensing: weak ,Joint probability distribution ,Weak gravitational lensing ,media_common ,REDSHIFT SURVEY ,Physics ,Science & Technology ,COSMIC cancer database ,POWER SPECTRA ,Astronomy and Astrophysics ,Redshift survey ,Redshift ,Galaxy ,0201 Astronomical And Space Sciences ,DARK-MATTER HALOES ,Space and Planetary Science ,Sky ,Physical Sciences ,Dark energy ,DIGITAL SKY SURVEY ,MORPHOLOGY-DENSITY RELATION ,GRAVITATIONAL SHEAR ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Weak lensing can be observed through a number of effects on the images of distant galaxies; their shapes are sheared, their sizes and fluxes (magnitudes) are magnified and their positions on the sky are modified by the lensing field. Galaxy shapes probe the shear field whilst size, magnitude and number density probe the convergence field. Both contain cosmological information. In this paper we are concerned with the magnification of the size and magnitude of individual galaxies as a probe of cosmic convergence. We develop a Bayesian approach for inferring the convergence field from a measured size, magnitude and redshift and demonstrate that the inference on convergence requires detailed knowledge of the joint distribution of intrinsic sizes and magnitudes. We build a simple parameterised model for the size-magnitude distribution and estimate this distribution for CFHTLenS galaxies. In light of the measured distribution, we show that the typical dispersion on convergence estimation is ~0.8, compared to ~0.38 for shear. We discuss the possibility of physical systematics for magnification (similar to intrinsic alignments for shear) and compute the expected gains in the Dark Energy Figure-of-Merit (FoM) from combining magnification with shear for different scenarios regarding systematics: when accounting for intrinsic alignments but no systematics on the magnification signal, including magnification could improve the FoM by upto a factor of ~2.5, whilst when accounting for physical systematics in both shear and magnification we anticipate a gain between ~25% and ~65%. In addition to the statistical gains, the fact that cosmic shear and magnification are subject to different systematics makes magnification an attractive complement to any cosmic shear analysis., Comment: 15 pages, 5 figures, accepted by MNRAS
- Published
- 2014
- Full Text
- View/download PDF
44. 3D Weak Gravitational Lensing of the CMB and Galaxies
- Author
-
Sudeep Das, Thomas D. Kitching, Alan Heavens, and Imperial College Trust
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC SHEAR ,POWER SPECTRUM ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Cosmology ,symbols.namesake ,gravitational lensing: weak ,Planck ,cosmological parameters ,IMAGE-ANALYSIS ,Weak gravitational lensing ,Physics ,BARYONS ,Science & Technology ,DARK ENERGY SURVEY ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,CONSTRAINTS ,Astronomy and Astrophysics ,INTRINSIC ALIGNMENTS ,Galaxy ,0201 Astronomical And Space Sciences ,Space and Planetary Science ,COSMOLOGY ,Physical Sciences ,Dark energy ,symbols ,Neutrino ,CHALLENGE ,MATTER ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper we present a power spectrum formalism that combines the full three-dimensional information from the galaxy ellipticity field, with information from the cosmic microwave background (CMB). We include in this approach galaxy cosmic shear and galaxy intrinsic alignments, CMB deflection, CMB temperature and CMB polarisation data; including the inter-datum power spectra between all quantities. We apply this to forecasting cosmological parameter errors for CMB and imaging surveys for Euclid-like, Planck, ACTPoL, and CoRE-like experiments. We show that the additional covariance between the CMB and ellipticity measurements can improve dark energy equation of state measurements by 15%, and the combination of cosmic shear and the CMB, from Euclid-like and CoRE-like experiments, could in principle measure the sum of neutrino masses with an error of 0.003 eV., Comment: Accepted to MNRAS
- Published
- 2014
- Full Text
- View/download PDF
45. Combining Size and Shape in Weak Lensing
- Author
-
Andrew H. Jaffe, Alan Heavens, Justin Alsing, Science and Technology Facilities Council (STFC), Imperial College Trust, and Science and Technology Facilities Council [2006-2012]
- Subjects
Systematic error ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMIC SHEAR ,Strong gravitational lensing ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Size measurement ,Astronomy & Astrophysics ,MASS ,gravitational lensing: weak ,Figure of merit ,EARLY-TYPE GALAXIES ,cosmological parameters ,dark energy ,Weak gravitational lensing ,Physics ,COSMIC cancer database ,Science & Technology ,MAGNIFICATION ,Astronomy and Astrophysics ,CLUSTER ,Galaxy ,0201 Astronomical And Space Sciences ,Space and Planetary Science ,COSMOLOGY ,Physical Sciences ,Dark energy ,astro-ph.CO ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Weak lensing alters the size of images with a similar magnitude to the distortion due to shear. Galaxy size probes the convergence field, and shape the shear field, both of which contain cosmological information. We show the gains expected in the Dark Energy Figure of Merit if galaxy size information is used in combination with galaxy shape. In any normal analysis of cosmic shear, galaxy sizes are also studied, so this is extra statistical information comes for free and is currently unused. There are two main results in this letter: firstly, we show that size measurement can be made uncorrelated with ellipticity measurement, thus allowing the full statistical gain from the combination, provided that $\sqrt{Area}$ is used as a size indicator; secondly, as a proof of concept, we show that when the relevant modes are noise-dominated, as is the norm for lensing surveys, the gains are substantial, with improvements of about 68% in the Figure of Merit expected when systematic errors are ignored. An approximate treatment of such systematics such as intrinsic alignments and size-magnitude correlations respectively suggests that a much better improvement in the Dark Energy Figure of Merit of even a factor of ~4 may be achieved., Comment: Updated to MNRAS published version and added footnote
- Published
- 2013
- Full Text
- View/download PDF
46. Introduction to the CFHT Legacy Survey final release (CFHTLS T0007)
- Author
-
H. J. McCracken, Yuliana Goranova, Jj Kavelaars, Olivier Ilbert, P. Hudelot, Frédéric Magnard, François Ochsenbein, Jean-Charles Cuillandre, Kanoa Withington, Herve Aussel, François Bonnarel, Nicolas Regnault, Pierre Fernique, Marc Betoule, and Yannick Mellier
- Subjects
Solar System ,Computer science ,In-phase ,Prime-focus ,Observatories ,Dark matter ,Surveys ,Virtual observatory ,Team planning ,Processing center ,Cosmology ,Wide-field imager ,law.invention ,Photometry ,Telescope ,Photometric calibration ,law ,Full integration ,Dark energy ,Buildings ,Remote sensing ,Data collection ,High impact ,Data acquisition ,Cosmic shear ,CdS ,Red shift ,Curation ,Supernova ,Calibration ,Data sets ,Optical ,Solar system - Abstract
The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) is a high impact scientific program which will see its final official release open to the world in 2012. That release will seal the legacy aspect of the survey which has already produced a large collection of scientific articles with topics ranging from cosmology to the Solar system. The survey core science was focused on dark energy and dark matter: the full realization of the scientific potential of the data set gathered between 2003 and 2009 with the MegaCam wide-field imager mounted at the CFHT prime focus is almost complete with the Supernovae Legacy Survey (SNLS) team preparing its third and last release (SNLS5), and the CFHTLenS team planning the release based around the cosmic shear survey later this year. While the data processing center TERAPIX offered to the CFHTLS scientific community regular releases over the course of the survey in its data acquisition phase (T0001-T0006), the final release took three years to refine in order to produce a pristine data collection photometrically calibrated at better than the percent both internally and externally over the total survey surface of 155 square degrees in all five photometric bands (u*, g', r', i', z'). This final release, called T0007, benefits from the various advances in photometric calibration MegaCam has benefited through the joint effort between SNLS and CFHT to calibrate MegaCam at levels unexplored for an optical wide-field imager. T0007 stacks and catalogs produced by TERAPIX will be made available to the world at CADC while the CDS will offer a full integration of the release in its VO tools from VizieR to Aladin. The photometric redshifts have been produced to be released in phase with the survey. This proceeding is a general introduction to the survey and aims at presenting its final release in broad terms., Observatory Operations: Strategies, Processes, and Systems IV, July 4-6, 2012, Amsterdam, Netherlands, Series: Proceedings of SPIE
- Published
- 2012
- Full Text
- View/download PDF
47. Signatures of the primordial universe in large-scale structure surveys
- Author
-
Van De Rijt, Nicolas, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique X, Francis Bernardeau et Filippo Vernizzi, and Van De Rijt, Nicolas
- Subjects
[SDU.ASTR.CO] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,grandes structures ,cisaillement cosmique ,[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,théorie des perturbations ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,cosmological perturbation theory ,cosmologie ,cosmology ,large-scale structure ,cosmic shear - Abstract
The study of the large-scale structure of the Universe is one of the most important tools used to understand the origin and evolution of the Universe. In this thesis, we focus on two different facets of this study: cosmological perturbation theory and cosmic shear. Cosmological perturbation theory describes how the large-scale structure of the Universe has been created out of the tiny initial perturbations. This evolution is described using fluid equations, and in this thesis, we introduce new versions of this Boltzmann hierarchy. The advantages and disadvantages of each hierarchy are thoroughly analysed. We also introduce a novel technique, dubbed the eikonal approximation, which enables us to better understand the results of existing perturbation theory approaches. Moreover, its broad range of applicability allows us to generalise many results. Cosmic shear describes how gravitational lensing deforms the image of the sky. In this thesis, we compute in great detail the bispectrum of cosmic shear to second order in the gravitational potentials. The complete calculation is done on the full sky, making the results much more general than the existing ones. To ease the otherwise impossible numerical calculations, we introduce the (extended) Limber approximation., L'étude des grandes structures de l'Univers est un des meilleurs moyens pour comprendre l'origine et l'évolution de l'Univers. Dans cette thèse, nous nous spécialisons aussi bien dans la théorie des perturbations aux échelles cosmologiques, que dans le cisaillement cosmique. La théorie des perturbations aux échelles cosmologiques décrit comment les grandes structures de l'Univers se sont formées à partir des minuscules fluctuations primordiales. Cette évolution est généralement décrite en se servant des équations du mouvement d'un fluide, et dans cette thèse nous introduisons quelques nouvelles versions de cette hiérarchie de Boltzmann. Les avantages et inconvénients de ces nouvelles hiérarchies sont analysés en détail. Nous introduisons aussi une nouvelle technique, appelée l'approximation eikonal, qui nous permet de mieux comprendre les résultats des autres approches utilisées en théorie des perturbations. En outre, grâce à sa généralité, elle nous permet de généraliser une grande quantité de résultats. Le cisaillement cosmique décrit comment l'effet des lentilles gravitationnelles déforme notre image du ciel. Dans cette thèse, nous étudions de manière détaillée le bispectre du cisaillement cosmique, au deuxième ordre en les potentiels gravitationnels. Le calcul est intégralement fait en "full sky", généralisant ainsi les résultats existants. Pour simplifier les calculs numériques, nous introduisons et généralisons l'approximation dite de Limber.
- Published
- 2012
48. Image Analysis for Cosmology: Results from the GREAT10 Galaxy Challenge
- Author
-
Kitching, T.D., Balan, S.T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill, M.S.S., Harmeling, S., Heymans, C., Hirsch, M., Honscheid, K., Kacprzak, T., Kirkby, D., Margala, D., Massey, R.J., Melchior, P., Nurbaeva, G., Patton, K., Rhodes, J., Rowe, B.T.P., Taylor, A.N., Tewes, M., Viola, M., Witherick, D., Voigt, L., Young, J., and Zuntz, J.
- Subjects
statistical [Methods] ,observations. [Cosmology] ,methods: statistical ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Dark-Matter ,Power Spectra ,Analysis Competition ,Handbook ,FOS: Physical sciences ,techniques: image processing ,Astrophysics::Cosmology and Extragalactic Astrophysics ,gravitational lensing: weak ,Weak-Lensing Measurements ,cosmology: observations ,Cosmic Shear ,image processing [Techniques] ,weak [Gravitational lensing] ,Model ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper we present results from the weak lensing shape measurement GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. This marks an order of magnitude step change in the level of scrutiny employed in weak lensing shape measurement analysis. We provide descriptions of each method tested and include 10 evaluation metrics over 24 simulation branches. GREAT10 was the first shape measurement challenge to include variable fields; both the shear field and the Point Spread Function (PSF) vary across the images in a realistic manner. The variable fields enable a variety of metrics that are inaccessible to constant shear simulations including a direct measure of the impact of shape measurement inaccuracies, and the impact of PSF size and ellipticity, on the shear power spectrum. To assess the impact of shape measurement bias for cosmic shear we present a general pseudo-Cl formalism, that propagates spatially varying systematics in cosmic shear through to power spectrum estimates. We also show how one-point estimators of bias can be extracted from variable shear simulations. The GREAT10 Galaxy Challenge received 95 submissions and saw a factor of 3 improvement in the accuracy achieved by shape measurement methods. The best methods achieve sub-percent average biases. We find a strong dependence in accuracy as a function of signal-to-noise, and indications of a weak dependence on galaxy type and size. Some requirements for the most ambitious cosmic shear experiments are met above a signal-to-noise ratio of 20. These results have the caveat that the simulated PSF was a ground-based PSF. Our results are a snapshot of the accuracy of current shape measurement methods and are a benchmark upon which improvement can continue. This provides a foundation for a better understanding of the strengths and limitations of shape measurement methods., Accepted to MNRAS
- Published
- 2012
49. Gravitational Lensing Accuracy Testing 2010 (GREAT10) Challenge handbook
- Author
-
Richard Massey, Ludovic Van Waerbeke, Alan Heavens, Sarah Bridle, Matthias Bethge, Konrad Kuijken, Marina Shmakova, Marc Gentile, Bernhard Schölkopf, Donnacha Kirk, Alina Kiessling, Adam Amara, Rachel Mandelbaum, Michael Hirsch, Jason Rhodes, Reshad Hosseini, John Shawe-Taylor, M. S. S. Gill, Sreekumar Balan, Guldariya Nurbaeva, Barnaby Rowe, Stephane Paulin-Henriksson, L. M. Voigt, Gary Bernstein, Tim Schrabback, Dugan Witherick, Catherine Heymans, Stefan Harmeling, Anais Rassat, Andy Taylor, Baback Moghaddam, Thomas D. Kitching, Malin Velander, Frederic Courbin, and David Wittman
- Subjects
FOS: Computer and information sciences ,Statistics and Probability ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Astrophysics ,Deconvolution ,imaging processing ,Astronomical survey ,01 natural sciences ,Measure (mathematics) ,Statistics - Applications ,Distortion ,0103 physical sciences ,Galaxy Shape Measurement ,Applications (stat.AP) ,Weak ,010306 general physics ,010303 astronomy & astrophysics ,Physics ,Blur ,Point-Spread Function ,Function (mathematics) ,Variable (computer science) ,Gravitational lens ,13. Climate action ,Modeling and Simulation ,Cosmic Shear ,Images ,Noise (video) ,Statistics, Probability and Uncertainty ,Pixelization ,Algorithm ,cosmology ,Statistical inference ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
GRavitational lEnsing Accuracy Testing 2010 (GREAT10) is a public image analysis challenge aimed at the development of algorithms to analyze astronomical images. Specifically, the challenge is to measure varying image distortions in the presence of a variable convolution kernel, pixelization and noise. This is the second in a series of challenges set to the astronomy, computer science and statistics communities, providing a structured environment in which methods can be improved and tested in preparation for planned astronomical surveys. GREAT10 extends upon previous work by introducing variable fields into the challenge. The "Galaxy Challenge" involves the precise measurement of galaxy shape distortions, quantified locally by two parameters called shear, in the presence of a known convolution kernel. Crucially, the convolution kernel and the simulated gravitational lensing shape distortion both now vary as a function of position within the images, as is the case for real data. In addition, we introduce the "Star Challenge" that concerns the reconstruction of a variable convolution kernel, similar to that in a typical astronomical observation. This document details the GREAT10 Challenge for potential participants. Continually updated information is also available from http://www.greatchallenges.info., Published in at http://dx.doi.org/10.1214/11-AOAS484 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org)
- Published
- 2011
50. An investigation of cosmological dark matter using weak gravitational lensing.
- Author
-
Jarvis, Robert Michael
- Subjects
- Cosmic Shear, Cosmological, Dark Matter, Gravitational Lensing, Investigation, Using, Weak
- Abstract
We present a comprehensive description of all components of cosmic shear measurements via weak gravitational lensing. We begin with a review of the theoretical underpinnings of the field, focusing on the development of shear statistics which can be applied to observed shear fields to constrain cosmological parameters. We then discuss how to accurately estimate shear from galaxy ellipticities. For this purpose, we develop optimal measurements techniques for individual galaxies and an optimal weighting scheme for estimating shear from an ensemble of shapes. Anisotropic seeing will produce shape correlations which, if uncorrected, will mask a lensing signature. The effect can be up to 100 times larger than the shear one is trying to measure, so it is an especially difficult problem. To this end, we develop a novel correction technique which involves a convolution to remove the bias due to the shape of the PSF, followed by an analytic correction for the size of the PSF. We also present two other biases for which one must correct in lensing surveys. Finally, we present results of a 75 square degree survey of galaxy shapes, for which we measure seeing-corrected ellipticities of 2 million galaxies with magnitude R ≤ 23 in 12 widely separated fields. We detect ellipticity correlations at high signal-to-noise at scales from 1--200 '. The signal at scales ≳ 30' exhibit the nearly pure E-mode behavior. We use this range of the data to find s8Wm/0. 30.57=0.69+0.16 -0.18 At smaller scales, we find significant contamination in a B-mode of order half of our E-mode signal, which precludes us from being able to break the degeneracy between s8 and Wm . We conclude with a discussion of the implications of this work and some future directions.
- Published
- 2002
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.