1. Identification of linear B cell epitopes on the E146L protein of African swine fever virus with monoclonal antibodies.
- Author
-
Zhang, Shu-Jian, Niu, Bei, Liu, Shi-Meng, Bu, Zhi-Gao, and Hua, Rong-Hong
- Abstract
The outbreak and spread of African swine fever virus (ASFV) have caused considerable economic losses to the pig industry worldwide. Currently, to promote the development of effective ASF vaccines, especially subunit vaccines, more antigenic protein targets are urgently needed. In this work, six transmembrane proteins (I329L, E146L, C257L, EP153R, I177L, and F165R) were expressed in mammalian cell lines and screened with pig anti-ASFV serum. It was found that the E146L protein was an immunodominant protein antigen among the six selected proteins. Moreover, the E146L protein induced antibody responses in all immunized pigs. To gain insight into the antigenic characteristics of the E146L protein, three monoclonal antibodies (mAbs; 12H12, 15G1, and 15H10) were generated by immunizing BALB/c mice with the purified E146L protein. The epitopes of the mAbs were further finely mapped through a peptide fusion protein expression strategy. Finally, the epitopes of the mAbs were identified as 48PDESSIAYMRFRN61 of the mAb 12H12, 138TLTGLQRII146 of the mAb 15G1, and 30GWSPFKYSKGNT41 of the mAb 15H10. Furthermore, the epitope of mAb 15H10 was validated as the immunodominant epitope with ASFV-infected pig sera. The chemically synthesized mAb 15H10 epitope peptide (EP1) exhibited the most extensive immunoreactivity with artificially or naturally ASFV-infected pig sera. The epitope 15H10 is located on the surface of the E146L protein and is highly conserved. These findings provide insight into the structure and function of the E146L protein of ASFV. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF